

Imagine the result

Northrop Grumman Systems Corporation

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

March 2007

Infrastructure, environment, facilities

Mr. Maneck G. Chichgar California Regional Water Quality Control Board Santa Ana Region 3737 Main Street, Suite 500 Riverside, California 92501-3348

ARCADIS U.S., Inc.
4445 Eastgate Mall
Suite 200
San Diego
California 92121
Tel 858.812.2087
Fax858.812.3004
www.arcadis-us.com

ARCADIS BBLES

Subject:

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report Former Y-12 Facility 301 Orangethorpe Avenue Anaheim, California CAO No. R8-2003-108

Dear Mr. Chichgar:

BBL Environmental Services, Inc. (BBLES, now known as ARCADIS U.S., Inc. [ARCADIS BBLES]) is pleased to provide you with one copy of the Two-Phase and Soil-Vapor Extraction Pilot Test Studies Report, dated March 8, 2007, for the Northrop Grumman Systems Corporation (NGSC) Former Y-12 Facility in Anaheim, California. This report was prepared on behalf of NGSC to present the findings of the pilot test conducted in accordance with the October 12, 2004 Groundwater Remediation Plan prepared by URS Corporation. A second copy is also being sent directly to Mr. Robert Holub of the Regional Water Quality Control Board.

Please contact the undersigned or Mr. Michael Martin at 301.331.1766 if you have any questions regarding this report or other aspects of the project.

Sincerely,

ARCADIS U.S., Inc.

Steven A. Fry, P.G. Senior Geologist II Date:

March 13, 2007

Contact:

Steven A. Fry

Phone:

858.812.2096

Email

steven.fry@arcadisus.com

Our ref:

B0037134.0000.00005

Imagine the result

Copies:

Mr. Robert Holub California Regional Water Quality Control Board Santa Ana Region 3737 Main Street, Suite 500 Riverside, California 92501-3348 (1 copy)

Ms. Malissa McKeith Lewis, Brisbois, Bisgaard & Smith LLP 221 North Figueroa Street, 13th Floor Los Angeles, CA 90012 (2 copies)

Mr. Michael Martin Northrop Grumman Systems Corporation One Hornet Way, PA12/W5 El Segundo, CA 90245-2804 (5 copies)

Page:

Infrastructure, environment, facilities

Transmittal Letter

To:

Mr. Robert Holub

California Regional Water Quality Control

Board

Santa Ana Region

3737 Main Street, Suite 500

Riverside, California 92501-3348

From:

Steven A. Fry, P.G.

Plans

March 14, 2007

☐ Under Separate Cover Via

Copies:

Subject:

TPE and SVE Pilot Test Studies Report

Former Y-12 Facility

We are sending you:

☑ Attached

☐ Shop Drawings

ARCADIS BBL Project No.:

Mr. Maneck Chichgar

Ms. Malissa McKeith

Mr. Michael Martin

B0037134.0000.00005

☐ Specifications

2 y/ NO

ARCADIS U.S., Inc. 4445 Eastgate Mall

Suite 200

San Diego

California 92121

Tel 858.812.2087

Fax 858.812.3004

☐ Change Order

the Following Items:

Copies	Date	Drawing No.	Rev.	Description	Action*
1	3.14.07	N/A	N/A	Two-Phase and Soil Vapor Extraction Pilot Test Studies	F
				Report, Former Y-12 Facility, Anaheim, California	
					-
				·	
AN A	Approved Approved As As Requested			CR Correct and Resubmit	oies
	ethod ostal Service od/Registered			Delivery ☐ FedEx Priority Overnight ☐ FedEx 2-D Service (UPS) ☒ FedEx Standard Overnight ☐ FedEx Eco	
omments	s:				
	,				
WOCR Transmi	ttal Letter 3.13.07			Page: 1/2	
*****OD" LIGHBIN	COUDI U. 10.UI			1/2	

Infrastructure, environment, facilities

Mr. Maneck G. Chichgar California Regional Water Quality Control Board Santa Ana Region 3737 Main Street, Suite 500 Riverside, California 92501-3348

ŭ	RWOC			
	MAR	15	2007	

ARCADIS U.S., Inc.
4445 Eastgate Mall
Suite 200
San Diego
California 92121
Tel 858.812.2087
Fax858.812.3004
www.arcadis-us.com

ARCADIS BBLES

Subject:

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report Former Y-12 Facility 301 Orangethorpe Avenue Anaheim, California CAO No. R8-2003-108

Dear Mr. Chichgar:

BBL Environmental Services, Inc. (BBLES, now known as ARCADIS U.S., Inc. [ARCADIS BBLES]) is pleased to provide you with one copy of the Two-Phase and Soil Vapor Extraction Pilot Test Studies Report, dated March 8, 2007, for the Northrop Grumman Systems Corporation (NGSC) Former Y-12 Facility in Anaheim, California. This report was prepared on behalf of NGSC to present the findings of the pilot test conducted in accordance with the October 12, 2004 Groundwater Remediation Plan prepared by URS Corporation. A second copy is also being sent directly to Mr. Robert Holub of the Regional Water Quality Control Board.

Please contact the undersigned or Mr. Michael Martin at 301.331.1766 if you have any questions regarding this report or other aspects of the project.

Sincerely,

ARCADIS U.S., Inc.

Steven A. Fry, P.G. Senior Geologist II Date:

March 13, 2007

Contact:

Steven A. Fry

Phone:

858.812.2096

Email:

steven.fry@arcadisus.com

Our ref:

B0037134.0000.00005

Imagine the result

Mr. Maneck Chichgar March 13, 2007

Copies:

Mr. Robert Holub California Regional Water Quality Control Board Santa Ana Region 3737 Main Street, Suite 500 Riverside, California 92501-3348 (1 copy)

Ms. Malissa McKeith Lewis, Brisbois, Bisgaard & Smith LLP 221 North Figueroa Street, 13th Floor Los Angeles, CA 90012 (2 copies)

Mr. Michael Martin Northrop Grumman Systems Corporation One Hornet Way, PA12/W5 El Segundo, CA 90245-2804 (5 copies)

Page:

Paris A. Hajali, Ph.D., P.E. Principal Engineer/Vice President

Steven A. Fry, P.G. Senior Geologist II

Maher M. Zein, Ph.D., EIT Project Engineer

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

Prepared for:
Northrop Grumman Systems Corporation

Prepared by: ARCADIS U.S., Inc. 2600 Michelson Drive Suite 830 Irvine California 92612 Tel 949.474.9052 Fax 949.474.9345

Our Ref.: B0037134.0000.00005

Date: March 8, 2007

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

- A .	\mathbf{n}	A D	110	
А	Κŧ	AL.	117	BBLES
, ,		, ,,		DULLO

Table of Contents

Ex	ecutive S	Summa	ary		1
1.	Introdu	ction			3
	1.1	Site D	escription		3
	1.2	Site G	eology an	d Hydrogeology	4
	1.3	Descri	iption of th	e Remedial Technologies	4
		1.3.1	TPE Pil	ot Test	4
		1.3.2	SVE Pil	ot Test	5
	1.4	Object	tives and	Scope	5
	1.5	Repor	t Organiza	tion	6
2.	Pilot Te	st Wo	rk Plan		7
	2.1	Extrac	tion and N	fonitoring Well Installation	7
	2.2	Pre-Fi	eld Activiti	es	7
		2.2.1	Health a	and Safety Plan Preparation	8
		2.2.2	Utility C	learance	8
		2.2.3	Land Si	urveying	8
		2.2.4	Permitti	ng	8
3.	Pilot Te	esting	Impleme	ntation	9
	3.1	TPE P	Pilot Test		9
		3.1.1	Remed	ation System Installation and Debugging	9
		3,1.2	Operati	on and Performance Monitoring	9
		3.1.3	Results	and Observations	10
			3.1.3.1	System Operation Parameters	11
			3.1.3.2	Inlet VOC Concentrations	11
			3.1.3.3	Groundwater Extraction Flow	11
			3.1.3.4	ROI Parameters	12
			3.1.3.5	Waste Generation	12

A D	~ x n			
AK	CAL	115	BBLES	

Table of Contents

6.	Refere	nces			20
5.	Conclu	usions	and Rec	ommendations	18
		4.2.2	Mass R	lemoval	
		4.2.1		יים, והתייחות מדים לבר לרון אל את לא הסיימיי השמיי המלוק שוניית ולה המהקיימיות המייחות להייחות המייחות היישה מ	
	4.2	SVE			17
		4.1.2	Mass R		16
		4.1.1	ROI		16
	4.1	TPE			16
4.	Pilot T	esting	Evaluati	on	16
			3.2.3.4	Waste Generation	15
			3.2.3.3	ROI Parameters	14
			3.2.3.2	Inlet VOC Concentrations	14
			3.2.3.1	System Operation Parameters	14
		3.2.3	Results	and Observations	14
		3.2.2	Operati	on and Performance Monitoring	13
		3,2.1	Remed	iation System Installation and Debugging	13
	3.2	SVEF	iiot rest		12

Tables

able 1	Operation and Performance Monitoring – TPE Pilot Test
Table 2	Field Vapor Inlet VOC Concentrations (PID) – TPE Pilot Test
Table 3	Laboratory Vapor Inlet VOC Concentrations – TPE and SVE Pilot Tests
Table 4	$\label{lem:voc} \mbox{VOC Concentrations in Extracted Groundwater} - \mbox{TPE Pilot Test}$
Table 5	Summary of Groundwater Well Measurements – TPE Pilot Test
Table 6	Operation and Performance Monitoring – SVE Pilot Test
Table 7	Field Vapor Inlet VOC Concentrations (PID) – SVE Pilot Test

Table of Contents

Figures

Figure 1	Site Location Map
Figure 2	TPE and SVE Monitoring Well Locations
Figure 3	VOC Inlet Concentrations and Removal on Day 1 – TPE Pilot Test
Figure 4	VOC Inlet Concentrations and Removal on Day 2 – TPE Pilot Test
Figure 5	Groundwater Elevation and Drawdown in Monitoring Wells on Day 1 – TPE Pilot Test
Figure 6	Groundwater Elevation and Drawdown in Monitoring Wells on Day 2 – TPE Pilot Test
Figure 7	VOC Inlet Concentrations and Removal – SVE Pilot Test
Figure 8	Effect of Inlet Vacuum and Well Distance on Vacuum Observed in Shallow Monitoring Wells – SVE Pilot Test
Figure 9	Effect of Inlet Vacuum and Well Distance on Vacuum Observed in Deep Monitoring Wells – SVE Pilot Test

Appendices

- Well Construction Logs
- Well Permits
- **AQMD Permit** C
- D Laboratory Analytical Reports

ARCADIS BRIES

Two-Phase and Soil
Vapor Extraction Pilot
Test Studies Report

Former Y-12 Facility Anaheim, California

Executive Summary

BBL Environmental Services, Inc., an ARCADIS company (BBLES), has prepared this Two-Phase Extraction (TPE) and Soil Vapor Extraction (SVE) Pilot Test Report for Northrop Grumman Systems Corporation (NGSC) to provide a summary of the TPE and SVE pilot testing conducted at the Former NGSC Y-12 Facility (Site) in Anaheim, California. The TPE/SVE pilot tests were performed between October 23 and 26, 2006 in general accordance with the Groundwater Remediation Plan, prepared by URS Corporation on October 12, 2004 and approved by the Santa Ana Regional Water Quality Control Board in their April 19, 2006 letter. This work was conducted based on our proposal to NGSC dated July 18, 2006.

The facility was operated by NGSC for aerospace manufacturing between 1962 and 1994 for manufacturing aircraft parts. The Site was sold in 1996 and is now used as an automotive products packaging and storage facility. Before selling the property, NGSC conducted soil investigation and performed limited soil remediation of petroleum compounds, metals, and volatile organic compounds (VOCs). In 1995, the SARWQCB issued a "no further action" letter for the soil remediation performed at specific locations at the former Site. Following this determination, NGSC installed a network of 18 groundwater monitoring wells to evaluate the quality of the groundwater beneath and in the vicinity of the facility. Based on these results, the SARWQCB concluded that no further investigations downgradient of the Y-12 facility were necessary and requested that NGSC develop a groundwater remediation plan to address onsite impacts. Based on previous investigations, the primary constituents of concern (COCs) in groundwater at the site are VOCs, including trichloroethene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), and tetrachloroethene (PCE). However, PCE is not known to have been used at the site and is not considered to be a site-related COC.

The purpose of the TPE/SVE pilot test was to evaluate the performance and effectiveness of these remedial technologies in reducing the concentrations of the volatile organic COCs in vadose-zone soil and perched groundwater at the site. A second objective was to gather data related to subsurface conditions to develop site-specific engineering design parameters to aid in selecting a remediation technology.

Prior to the commencement of the TPE/SVE pilot testing, three nested monitoring/SVE wells (NMW-11, NMW-12, and NMW-13) were installed at distances of approximately 12, 30, and 60 feet from monitoring well NMW-2A, which was used as the TPE/SVE extraction well. Each of the three nested monitoring/SVE wells consisted of a dual

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12, Facility Anaheim, California

completion, with a shallow interval screened between 30 and 70 feet bgs and a deeper interval screened between 80 and 95 feet bgs. The shallow interval was used to test conditions in the vadose zone and the deeper interval was used to evaluate the perched groundwater interval. The shallow screened interval of well NMW-11 was later utilized for vapor extraction as part of the SVE pilot test.

TPE pilot testing was initiated on October 23, 2006 with system installation and debugging prior to two days of system operation. This was followed by one day of SVE pilot testing on October 26, 2006. The TPE technology removed a combination of contaminated groundwater and hydrocarbon-impacted vapors from the subsurface in a high-velocity dual-phase stream, while the SVE system extracted only vapor streams. Both systems were operated at various flow and vacuum settings to determine which parameters work best for the lithologic conditions. The effect of each remedial system on monitoring wells located in the vicinity of the extraction well was evaluated throughout the pilot test period.

The efficiency and implementability of the investigated remedial technologies were assessed based on two criteria: radius of influence (ROI) and the removal rate of volatile organic compounds (VOCs). High removal rates were observed over the limited period of time during the initial testing of the SVE system. The ROI of the SVE pilot system, determined by monitoring the vacuum in the groundwater monitoring wells surrounding the extraction well, was estimated to be approximately 50 feet. In the TPE technology case, the VOC removal rate (as hexane) was significantly lower depending on the operating conditions. The low permeability of the soil and the lack of hydraulic conductivity were manifested in the absence of communication between the extraction well and the monitoring wells. Neither groundwater drawdown nor vacuum was detected in the monitoring wells.

Therefore, the higher initial VOC removal efficiency and the more significant radius of influence associated with the SVE system indicated the superiority of SVE over TPE for potential full-scale implementation at the Site. The SVE pilot test also generated essential data that would be used to develop site-specific engineering design parameters for full-scale application of SVE at the Site.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

1. Introduction

BBL Environmental Services, Inc., an ARCADIS company (BBLES), has prepared this Two-Phase Extraction (TPE) and Soil Vapor Extraction (SVE) Pilot Test Report for Northrop Grumman Systems Corporation (NGSC) to provide a summary of the TPE and SVE pilot testing conducted at the Former NGSC Y-12 Facility (Site) in Anaheim, California. The TPE/SVE pilot tests were conducted in general accordance with the Groundwater Remediation Plan (GRP), prepared by URS Corporation on October 12, 2004 (URS, 2004) and approved by the Santa Ana Regional Water Quality Control Board (SARWQCB) in their April 19, 2006 letter. This work was conducted based on our proposal to NGSC dated July 18, 2006.

The pilot test was conducted in the western portion of the facility, which is located at 301 E. Orangethorpe Avenue in Anaheim, California (Figure 1). The facility is now operated by EMPI, Inc. (EMPI), an automotive parts and accessories wholesaler. This summary report covers the pre-field activities, system installation, operation, monitoring activities, and results for both pilot tests.

1.1 Site Description

The Site is bordered to the north by Kimberly Avenue and to the south by Orangethorpe Avenue. A trailer park and commercial/light industrial properties border the Site to the east and west, respectively. The former Y-12 facility was operated by NGSC between 1962 and 1994 for manufacturing aircraft parts. The Site was sold in 1996 and is now used as an automotive products packaging and storage facility.

Before selling the property, NGSC conducted soil investigation and performed limited soil remediation of petroleum compounds, metals, and volatile organic compounds (VOCs). In 1995, the SARWQCB issued a "no further action" letter for the soil remediation performed at specific locations at the former Y-12 facility. Following this determination, NGSC installed 18 groundwater monitoring wells to evaluate the quality of the groundwater beneath and in the vicinity of the facility. Based on these results, the SARWQCB concluded that no further investigations downgradient of the Y-12 facility were necessary and requested that NGSC develop a groundwater remediation plan to address onsite impacts. Based on previous investigations, the primary constituents of concern (COCs) in groundwater at the site are VOCs, including trichloroethene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), and tetrachloroethene (PCE). However, PCE is not known to have been used at the site and is not considered to be a site-related COC.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

1.2 Site Geology and Hydrogeology

Subsurface geology studies have shown the sediments above approximately 70 feet below ground surface (bgs) to be predominantly comprised of poorly-graded sand interbedded with thin beds of silts, silty sand, and clayey sands. The sandy soil is followed by an interbedded transition zone of silts, clays, and fine sands that is underlain by a 15- to 30-foot thick clay horizon that creates localized, semi-perched groundwater conditions. The sediments below the clay interval are characterized by poorly-graded saturated sands to a depth of approximately 200 feet bgs (OCWD, 1991; URS, 2004).

The Y-12 site is located within the Santa Ana Forebay Groundwater Subbasin as identified by the Orange County Water District (OCWD, 1991). The uppermost regional aquifer beneath the Site is the Upper aquifer encountered at depths between 110 and 130 feet bgs. The first occurrence of groundwater beneath the Site is in poorly-graded sands at approximately 100 feet bgs above the Upper aquifer in localized, small, discontinuous, semi-perched groundwater zones. Regional groundwater flow in the vicinity of the Site is generally to the west-southwest at a 0.001 feet per foot gradient. A number of groundwater monitoring wells, several of which have been observed to be dry during quarterly monitoring, were installed at the Site to monitor conditions in the semi-perched zone.

1.3 Description of the Remedial Technologies

Descriptions of the TPE and the SVE technologies are presented in the following subsections.

1.3.1 TPE Pilot Test

TPE remedial systems have demonstrated their effectiveness at removing separate-phase product from the subsurface, resulting in reduction of hydrocarbons from soil and groundwater. The TPE technology uses a single vacuum pump to remove a combination of contaminated groundwater, free phase hydrocarbons, and hydrocarbon vapor from the subsurface in a high-velocity dual-phase (liquid and vapor) stream. Both liquid and vapor phases are extracted and treated or collected for disposal. Contaminated liquid and vapor are extracted through downhole piping by application of a vacuum to the well. This vacuum creates vapor phase pressure gradients and resultant vapor and liquid flow towards the well. The greater the applied vacuum, the larger the hydraulic gradients that will be achieved, resulting in greater liquid and vapor

ARCADIS BRIES

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

recovery. TPE also maximizes the effectiveness of soil vapor extraction by lowering the water table and therefore increasing air-phase permeability in the dewatered part of the aquifer.

1.3.2 SVE Pilot Test

SVE, also known as soil venting and vacuum extraction, is a widely applied, effective *in situ* remedial technology used for remediating unsaturated (vadose) zone soils contaminated with volatile and semi-volatile organic compounds. The process involves inducing airflow in the subsurface via applied vacuum, thus enhancing the *in situ* volatilization of the COCs. The vacuum, usually applied to the contaminated soil matrix through extraction wells, creates a negative pressure gradient that causes movement of vapors toward these wells. SVE takes advantage of the volatility of the contaminants to allow mass transfer from adsorbed, dissolved, and free phases in the soil to the vapor phase, which is then removed under vacuum and treated above ground. The increased air flow in the subsurface can also stimulate biodegradation of the less volatile contaminants. Soil vapor extraction has several advantages that allow its implementation at a broad spectrum of sites. Soil vapor extraction:

- Can be implemented with minimal disturbance to site operations;
- Is effective in removing the volatile contaminants present in the vadose zone;
- Has the potential for treating large volumes of soil at feasible capital and operational costs;
- · System can be mobilized and installed quickly and easily; and
- Is compatible and can be easily integrated with other technologies required for site cleanup.

1.4 Objectives and Scope

The purpose of the TPE/SVE pilot test was to evaluate the performance and effectiveness of these two remedial technologies in reducing the concentrations of the volatile organic COCs in vadose-zone soil and perched groundwater at the site. A second objective was to gather data related to subsurface conditions to develop site-specific engineering design parameters to aid in selecting an effective remediation technology.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

The scope of pilot testing at the former Y-12 facility included the installation of three nested monitoring/SVE wells placed at distances of approximately 12, 30, and 60 feet from the TPE/SVE pilot test extraction well (NMW-2A, screened between 85 and 95 feet bgs) in order to monitor the radius of influence (ROI). Each of the three nested monitoring/SVE wells consisted of a dual completion, with a shallow interval screened between 30 and 70 feet bgs and a deeper interval screened between 80 and 95 feet bgs. The shallow interval was used to test conditions in the vadose zone and the deeper interval was used to test the perched groundwater interval. After the wells were constructed, the pilot system was installed and testing was initiated. The effect of the remedial system on the nested monitoring/SVE wells was evaluated throughout the pilot test period.

1.5 Report Organization

Section 2 discusses the work plan and methodology pertaining to pre-field activities and groundwater monitoring well installation conducted prior to pilot testing. The application of the TPE and SVE technologies and the results of the pilot testing are presented in Section 3. The effectiveness and feasibility of implementing each of the aforementioned technologies in full-scale at the Site are evaluated in Section 4. Conclusions of TPE/SVE pilot testing and recommendations for future implementation are presented in Section 5 and References are presented in Section 6.

ARCADIS BRIES

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

2. Pilot Test Work Plan

2.1 Extraction and Monitoring Well Installation

In preparation for the pilot test, the three nested monitoring/SVE wells designated NMW-11, 12, and 13 were installed in the vicinity of the existing TPE extraction well (NMW-2A). These three wells were located 2.3 feet, 30.2 feet, and 60.3 feet from NMW-2A in accordance with the approved work plan prepared by URS (Figure 2). Each of the nested monitoring well boreholes was advanced to a depth of approximately 95 feet bgs. Within each borehole, two 2-inch diameter piezometers were installed. Each piezometer was constructed with Schedule 40 polyvinyl chloride (PVC) well casing and PVC screen with 0.010-inch slots. The shallow piezometer was screened from approximately 30 to 70 feet bgs, targeting the more permeable soil in the vadose zone. The second piezometer was screened from approximately 80 to 95 feet bgs, targeting the possible semi-perched groundwater. The lower screened interval in these wells was used for measurement of groundwater levels and vacuum to determine the ROI of TPE pilot system in the clayey confining layer. An "S" was appended to the well name to indicate the shallow completion (e.g., "NMW-11S") and a "D" was appended to indicate the deeper completion (e.g., NMW-11D).

The upper screened interval of NMW-11 was utilized for SVE pilot testing, while vacuum was measured in the upper screened intervals of NMW-12 and NMW-13 to estimate the ROI of the SVE technology. During drilling activities, soil samples at five foot-intervals were screened with a portable photoionization device (PID) and the soil characteristics were described. Boring logs were prepared for each well to summarize the subsurface conditions encountered (Appendix A).

The nested monitoring wells were completed at the surface with 12-inch diameter circular, flush-mounted, traffic-rated well boxes. Each well was developed by BBLES personnel a minimum of 48 hours following installation using a combination of surging, bailing, and pumping. Soil cuttings and fluids were placed in NGSC-provided containers and disposed of by NGSC. The wells were surveyed by a licensed land surveyor following development.

2.2 Pre-Field Activities

The following sections describe the activities performed in preparation for TPE/SVE pilot testing.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

2.2.1 Health and Safety Plan Preparation

BBLES prepared a site-specific health and safety plan (HASP) to address health and safety concerns related to the proposed scope of the field activities.

2.2.2 Utility Clearance

BBLES conducted a site visit to locate and mark the proposed wells in coordination with NGSC and the current facility tenant/owner. During this visit, geophysical utility clearance was conducted to locate underground utilities in the vicinity of the proposed boring locations using electromagnetic (EM) pipe and cable location scans, EM induction metal detection, and ground penetrating radar. Underground Service Alert (USA) was also notified regarding planned subsurface activities.

2.2.3 Land Surveying

Following their installation, the locations of the three nested groundwater monitoring/SVE wells were surveyed by a licensed land surveyor providing northing, easting, and elevation data.

2.2.4 Permitting

Prior to the installation of the three monitoring/SVE wells, BBLES obtained well permits (Appendix B) from the City of Anaheim Public Utilities Department, Environmental Services Division and coordinated site access with the current property owner. BBLES also procured Air Quality Management District (AQMD) permits for the TPE/SVE system (Appendix C).

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

3. Pilot Testing Implementation

The TPE/SVE pilot test implementation methodology, results, and conclusions are discussed in the following subsections.

3.1 TPE Pilot Test

After the nested monitoring/SVE wells were installed, the TPE pilot system components were mobilized to the Site.

3.1.1 Remediation System Installation and Debugging

The TPE pilot system components were installed on October 23, 2006. The equipment included both in-well and aboveground components. The in-well components were comprised of a 1-inch, Schedule 40 PVC extraction pipe extending 1 to 2 feet above the bottom of NMW-2A. A pressure gauge was installed at the well cap to monitor vacuum in the well casing during the operation of the remedial system. The aboveground components included a TPE system consisting of a 250 standard cubic feet per minute (scfm) Dekker Hi-Vac SVE Blower permitted for chlorinated vapor/aqueous streams and equipped with a 20 horsepower (HP) motor, air-to-air cooler, air/water separator, and high level shutoff; a carbon adsorption system consisting of two 1,000-pound (lb) carbon vessels filled with virgin coconut shell carbon (1,000 lbs per vessel); a 4000-gallon Baker Tank TM for temporary water storage; and associated piping and electrical components. The aboveground components were connected to the well head through a network of flexible hosing, air pressure tubing, and electrical cable.

The TPE system operation was monitored and controlled through a network of pressure gauges and air flow meters. The three monitoring wells surrounding NMW-2A were capped and pressure gauges were installed to monitor in-well vacuum generated by the TPE system. Two sampling ports, located at the primary carbon vessel inlet and the secondary carbon vessel outlet, were used to monitor inlet and outlet VOC concentrations and to ensure compliance with the AQMD permit.

3.1.2 Operation and Performance Monitoring

Following successful installation and debugging of the TPE remedial system, BBLES commenced the two-day pilot testing on October 24, 2006. For approximately 8 hours on each day of operation, the system was run at different operational parameters of

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

flow and vacuum to determine which parameters work best for the lithologic conditions at the Site. System monitoring included vapor monitoring in accordance with AQMD requirements, system checks, and components maintenance as per vendor specifications.

During system operation, performance monitoring consisted of the following:

- Groundwater elevation measurements of the three monitoring wells using a water level indicator (hourly);
- Vacuum measurements of the extraction well (casing) and the three monitoring wells (15 to 30 minute intervals);
- System parameter measurements of air flow, vacuum, and temperature (15 to 30 minute intervals);
- Vapor VOC sampling by a PID before and after the carbon filters (5 minute intervals for first hour, 15 minute intervals for next hour, and 30 minute intervals or more thereafter, depending on VOC concentration changes);
- Vapor VOC sampling before carbon filters by United States Environmental Protection Agency (EPA) Method 8260B (three per day - 15 minutes after beginning operation, midway through operation, and at end of day); and
- Water VOC sampling of effluent by EPA Method 8260B (once per day).

3.1.3 Results and Observations

During the pilot test, inlet vacuum and the resulting air flow were the key operational parameters to be tested. The TPE system was operated at different inlet vacuums on Day 1 of the study to identify optimum operation parameters, which in turn caused the observed variations in air flow and inlet VOC concentrations. On the second day of TPE pilot testing, the extraction pipe was moved from NMW-2A to the deep screened interval of NMW-11 in order to improve vapor and groundwater extraction. Results and data of the two days of the TPE pilot test are discussed in the following sections. Daily operation and maintenance measurements are included in Table 1. Laboratory analytical reports are attached in Appendix D.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

3.1.3.1 System Operation Parameters

The TPE pilot test system was observed to generate an inlet vacuum ranging between 15 inches of mercury (in. Hg) and 27.5 in. Hg. The system was initially operated at 17.5 in. Hg on Day 1, the inlet vacuum was then increased to the maximum (27.5 in. Hg) when the well was dewatered completely. Groundwater extraction flow could not be maintained due to the tight formation of the predominantly clay interval present between 70 and 100 feet bgs at the Site.

On the second day of the TPE test, the extraction pipe and the well casing were perforated to allow for ambient air to enter the well space and assist in pulling groundwater from NMW-2A. This improved groundwater extraction for only a short period due to the slow recharge rate in the well. Consequently, the extraction pipe was moved to the deep screened interval of the adjacent well, NMW-11. As in the NMW-2A case, groundwater extraction was observed initially until the well was completely dewatered after approximately one hour of operation. Air flow fluctuated between 21 scfm and 109 scfm on Day 1 and between 61 scfm and 98 scfm on Day 2. As indicated above, a pressure gauge was installed on top of the TPE well casing to determine vacuum in the extraction wells during the pilot test. Casing vacuum ranged between 3 in. Hg and 8.5 in. Hg on Day 1 and between 0 in. Hg and 10 in. Hg on Day 3.

3.1.3.2 Inlet VOC Concentrations

Inlet VOC concentrations, measured using a hand-held PID, are presented in Table 2. The inlet VOC concentrations and mass removed each day are illustrated in graphs on Figures 3 and 4. VOC levels were generally low on Day 1 and fluctuated between 11 parts per million by volume (ppmv) and 403 ppmv, the latter observed after completely stopping dilution with ambient air. VOC concentrations fluctuated between 6 ppmv and 69 ppmv on Day 2 of TPE pilot testing. The inlet vapor stream was also sampled daily for VOC analysis by EPA Method 8260B. Acetone (4 ppmv), 1,1-DCE (25 ppmv), PCE (4.3 ppmv), TCE (23 ppmv), and 1,1,1-TCA (1.9 ppmv) were the VOCs detected at the highest concentration in the system inlet. Analytical results of the vapor samples are presented in Table 3.

3.1.3.3 Groundwater Extraction Flow

A flow totalizer was used to determine the volume and the flow rate of groundwater extracted during the TPE pilot testing. A total of 116 gallons of groundwater were

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

pumped from TPE wells NMW-2A and NMW-11D during two days of system operation, resulting in an average flow rate of 0.13 gallons per minute (gpm). Increasing the inlet vacuum did not improve groundwater extraction rate due to the low permeability of the clay-rich interval between approximately 70 and 100 feet bgs.

The extracted groundwater was sampled daily during the pilot test and analyzed for VOCs. A summary of the analytical results is presented in Table 4. Methyl ethyl ketone (MEK), TCE, 1,1-DCE, and PCE were the VOCs detected at the highest concentrations in the effluent, with concentrations as high as 250 micrograms per liter (μ g/L), 140 μ g/L, 32 μ g/L, and 18 μ g/L, respectively.

3.1.3.4 ROI Parameters

Vacuum measurements in monitoring/SVE wells NMW-11, NMW-12, and NMW-13 revealed no communication between the extraction well and the monitoring wells since negative pressures were not detected in any of the well casings of the three wells (Table 1). Groundwater elevation fluctuations in the monitoring wells were insignificant and minimal drawdown was observed in NMW-11D, the well closest to the extraction well (Table 5, and Figures 5 and 6). Groundwater levels in wells NMW-12D and NMW-13D slightly increased as the TPE pilot test proceeded, possibly due to atmospheric pressure variations.

3.1.3.5 Waste Generation

The TPE technology generated VOC-impacted vapor streams that required treatment prior to release to the atmosphere. Vapor-phase VOCs detected during the pilot test were low (mostly <100 ppmv), and activated carbon breakthrough did not occur during the two-day testing period. In addition to vapor-phase VOCs, the TPE technology generated aqueous-phase VOCs in the groundwater that was extracted from the aquifer at a relatively low flow rate (approximately 0.13 gpm). Over two approximately 8-hour days of pilot testing, the TPE system extracted 116 gallons of groundwater that needed further treatment prior to discharge.

3.2 SVE Pilot Test

The effectiveness of soil vapor extraction technology was investigated on Day 3 of pilot testing at the former Y-12 facility with the shallow screened interval of NMW-11 used as the extraction well.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

3.2.1 Remediation System Installation and Debugging

The SVE implemented at the Site consisted of the same aboveground components as the TPE pilot system with the vacuum line connected directly to the top of NMW-11S well casing. A pressure gauge was installed at the well cap to measure vacuum in the well casing during the operation of the SVE system.

The SVE system operation was monitored and controlled through a network of pressure gauges and air flow meters. TPE extraction well (NMW-2A), now used as a monitoring well, was capped and a pressure gauge was installed to monitor in-well vacuum generated by the SVE system. The shallow and deep intervals of wells NMW-12 and NMW-13 were also monitored during this pilot test. The carbon adsorption system inlet and outlet VOC concentrations were monitored throughout the SVE system operation to ensure compliance with the AQMD permit.

3.2.2 Operation and Performance Monitoring

After the completion of TPE testing, SVE pilot system was operated on one day (October 26, 2006) for approximately 9 hours. The system was run at various flow rates and vacuum levels to determine optimum operation parameters for the lithologic conditions. Vapor monitoring was performed in accordance with AQMD requirements.

During SVE system operation, performance monitoring consisted of the following:

- Vacuum measurements of the extraction well (casing) and the shallow and deep screened intervals of the three monitoring wells (15 to 30 minute intervals);
- System parameter measurements of air flow, vacuum, and temperature (15 to 30 minute intervals);
- Vapor VOC sampling by a PID before and after the carbon filters (5 minute intervals for first hour, 15 minute intervals for next hour, and 30 minute intervals or more thereafter, depending on VOC concentration changes); and
- Vapor VOC sampling before carbon filters by EPA Method 8260B (three per day

 15 minutes after beginning operation, midway through operation, and at end of day).

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

The SVE system did not generate any liquid waste requiring VOC analysis. At the end of TPE and SVE pilot testing, a sample of liquid was taken from the storage tank for waste profiling and disposal purposes.

3.2.3 Results and Observations

SVE system operation and monitoring results are discussed in the following subsections. Daily operation and performance measurements are included in Table 6. Laboratory analytical reports are attached in Appendix D.

3.2.3.1 System Operation Parameters

As in the case of TPE technology, vacuum and air flow were the two critical parameters to be investigated. The SVE pilot system was operated at different vacuums throughout the 9-hr testing period (10 in. Hg, 12.5 in. Hg, 15 in. Hg, and 17.5 in. Hg). As expected, the air flow was observed to decrease as the inlet vacuum increased and ranged between 102.5 ± 5.6 scfm at 17.5 in. Hg and 140.1 ± 1.3 scfm at 10 in. Hg. Vacuum was not detected in the extraction well NMW-11. In fact, a positive pressure was detected in the well casing, indicating a lithology with high permeability between ground surface and 70 feet bgs.

3.2.3.2 Inlet VOC Concentrations

Table 7 presents the VOC concentrations measured in the vapor inlet during the SVE pilot test with concentrations consistently exceeding the PID maximum reading of 9,999 ppmv. Inlet VOC concentrations and mass removed are illustrated in Figure 7. The inlet vapor stream was also sampled for VOC analysis by EPA Method 8260B shortly following system startup, midway through operation, and at the end of the SVE pilot testing. The highest detected contaminants were 1,1-dichloroethane (1,1-DCA, 1.2 ppmv to 1.8 ppmv), 1,1-DCE (540 ppmv to 600 ppmv), methylene chloride (50 ppmv to 83 ppmv), PCE (140 ppmv to 210 ppmv), toluene (3 ppmv to 5.6 ppmv), TCE (550 ppmv to 680 ppmv), and 1,1,1-TCA (16 ppmv to 23 ppmv) Analytical results of the vapor samples are presented in Table 3.

3.2.3.3 ROI Parameters

The negative pressure gradient generated by SVE systems induces the movement of subsurface vapors towards the extraction well(s). In general, the lower the inlet vacuum, the higher the air flow and the induced vacuum in the surrounding monitoring

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

wells. However, the SVE technology does not involve the extraction of groundwater. Accordingly, the vapor radius of influence is the key parameter taken into consideration when investigating the implementability of SVE and in the design of remedial systems. As shown in Table 6 and Figures 8 and 9, negative pressures were detected in the shallow wells NMW-12 and NMW-13, as well as the deep screened interval of NMW-11, with vacuum being highest in the shallow NMW-12 completion which was installed approximately 18 feet from the extraction well, NMW-11. The observed vacuum was lower 48 feet away in NMW-13. Thus, the vapor radius of influence was estimated at approximately 50 feet. Vacuum was also detected in the deep screened intervals of NMW-11 and NMW-12 and in the single-completion well NMW-2A (screened between 85 and 95 feet bgs).

3.2.3.4 Waste Generation

During the investigation of SVE technology, only VOC-impacted vapor streams were produced. Vapor-phase VOCs were detected at very high concentrations that exceeded 9,999 ppmv throughout SVE pilot testing. In general, the only liquid waste generated from SVE remedial systems was the condensate that accumulated in the air/water separator. Due to the short duration of SVE testing at the former Y-12 facility, a minimal amount of condensate was produced and pumped into the storage tank

Two-Phase and Soil
Vapor Extraction Pilot
Test Studies Report

Former Y-12 Facility Anaheim, California

4. Pilot Testing Evaluation

In this section, the TPE and SVE technologies are compared and evaluated according to two criteria that are discussed below in order to determine the most effective remedial alternative for full-scale implementation at the Site: radius of influence and mass removal.

4.1 TPE

During pilot testing of TPE technology at the former Y-12 facility, ROI and VOC mass removal were investigated.

4.1.1 ROI

Radius of influence is defined as the greatest distance from an extraction well at which a sufficient vacuum and vapor flow can be induced to adequately enhance volatilization and extraction of the contaminants in the soil. Radius of influence is the most important parameter to be considered in the design of the TPE system and is the major criterion in evaluating the applicability and effectiveness of a remedial technology. In the TPE pilot test case, two types of ROI values can be distinguished: (1) the vapor ROI which corresponds to the distance from the extraction well where a vacuum of at least 1 inch of water is detected and (2) the hydraulic ROI which can be determined by evaluating the effect of distance from the extraction well on the elevation and drawdown of groundwater in the surrounding monitoring wells. TPE pilot testing at the Site showed minimal groundwater elevation variations, as well as the absence of vacuum in the monitoring wells surrounding the TPE well. Thus, both the hydraulic and vapor radii of influence were insignificant. Based on these results, TPE is not considered a viable remedial alternative at the former Y-12 facility.

4.1.2 Mass Removal

The removal rate of VOCs at the Site was determined for each technology by dividing the total recovered mass by the duration of operation. Relatively low VOC concentrations were detected in the extracted vapor stream during the TPE pilot test. The total mass of VOCs extracted for approximately 6 hours of operation on Day 1 was only 0.42 pounds as hexane. On Day 2 of the TPE test, the VOC mass removed was 0.24 pounds as hexane over approximately 8 hours with inlet concentrations varying between 6 ppmv and 69 ppmv. Such a low mass removal rate considerably extends

Two-Phase and Soil
Vapor Extraction Pilot
Test Studies Report

Former Y-12 Facility Anaheim, California

the treatment period and renders TPE technology ineffective in remediating soil and groundwater at the Site.

4.2 SVE

Both ROI and mass removal were taken into consideration to evaluate the efficiency of SVE technology and its implementability at the Site.

4.2.1 ROI

Subsurface vapors were extracted from the shallow screened interval of well NMW-11 generating vacuum in the shallow wells NMW-12 and NMW-13, the latter located approximately 48 feet away from the extraction well. In addition, the detection of negative pressures in NMW-2A and in the deep screened intervals of NMW-11 and NMW-12 indicates communication between the shallow unsaturated zone and the semi-perched groundwater zone underneath. Therefore, implementing SVE technology at the Site would remediate soils in vertical and lateral zones.

4.2.2 Mass Removal

Inlet VOC concentrations, measured using a hand-held PID, during the SVE pilot test exceeded 9,999 ppmv at all times during the test. Consequently, the total mass of VOCs (as hexane) extracted over approximately 9 hours of operation is estimated to have exceeded 142 pounds. This amount of mass removal reflects the initial conditions in the subsurface and would be expected to significantly decline and stabilize with long term SVE operation.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

5. Conclusions and Recommendations

TPE and SVE pilot testing was performed at the NGSC former Y-12 facility for a total period of three days with the system run under various inlet vacuum and flow conditions to determine the optimal operation parameters for the lithologic conditions present at the Site. During this pilot testing, the efficiency of each remedial technology at reducing the levels of chlorinated VOCs at the Site was evaluated. The findings and conclusions of the TPE/SVE pilot system operation are listed below:

- The TPE system was operated continuously for approximately 8 hours per day during the two-day pilot test. On the third day, SVE technology was tested for approximately 9 hours;
- A total of 116 gallons of groundwater was extracted from the semi-perched groundwater zone during TPE pilot implementation. Two deep wells, NMW-2A and NMW-11, were alternately utilized for groundwater extraction in order to increase the flow rate. No groundwater was pumped out of the aquifer during SVE pilot testing;
- TPE application at the Site did not produce significant groundwater drawdown in any of the monitoring wells located in the vicinity of the groundwater/vapor extraction well. Minimal groundwater elevation fluctuations were also observed during SVE pilot system operation. Thus, neither remedial technology provided hydraulic control of the VOC-impacted semi-perched groundwater;
- Due to the low permeability of the soil in the deeper zones, vacuum was not observed in any of the monitoring wells surrounding the TPE well. However when soil vapor was extracted from the shallow interval of NMW-11, vacuum was detected as far as 48 feet from the SVE well. Thus, the vapor radius of influence of the SVE pilot system was estimated at approximately 50 feet. Communication between the shallow unsaturated zone and the semi-perched zone was observed following the detection of negative pressures in the deep well NMW-2A and the deep screened interval of well NMW-12;
- VOC levels as measured with a PID were generally low during TPE pilot test and fluctuated between 11 ppmv and 403 ppmv on Day 1 and between 6 ppmv and 69 ppmv on Day 2. This low yield indicates that a TPE system would have a

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

very low expected VOC removal rate. Conversely, VOC concentrations exceeded 9,999 ppmv throughout SVE testing duration independent of the operating conditions. Field, PID measurements of the vapor stream are an indication of the comparative superiority of the SVE technology at extracting VOCs from the vadose zone soil;

- In conclusion, the higher VOC removal efficiency and the more significant radius
 of influence associated with the SVE system indicated the superiority of SVE
 over TPE for potential full-scale implementation at the Site; and
- The SVE pilot test generated essential data to successfully develop site-specific engineering design parameters for potential full-scale application once the treatment area is defined.

Two-Phase and Soil Vapor Extraction Pilot Test Studies Report

Former Y-12 Facility Anaheim, California

6. References

California Regional Water Quality Control Board, Santa Ana Region. 2006.

Groundwater Remediation Plan — Cleanup and Abatement Order (CAO) No. R8-2003-108, Former Northrop Grumman Corporation (NGC) Y-12 Facility, 301 Orangethorpe Avenue, Anaheim, CA (April 19, 2006).

Orange County Water District. 1991. Phase I Hydrogeologic Investigation of Chlorinated VOC Contamination in the Anaheim/Fullerton Area (May 1991).

URS Corporation. 2004. *Workplan – Groundwater Remediation Plan, Former Y-12 Facility, 301 Orangethorpe Avenue, Anaheim, California* (October 12, 2004).

Tables

TABLE 1 OPERATION AND PERFORMANCE MONITORING TPE PILOT TEST (DAY 1)

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

	SVE Operation Parameters					TPE Well		Gro		toring Well Vacu H₂O)	ng Well Vacuum Extracted Gro		Proundwater	
Time	Air Pressure	Air Flow	Vacuum	Inlet/Outlet	Blower	Casing Vacuum	NM\	N-11	NM	N-12	NM	V-13	Volume	Rate
	(in, H ₂ O)	(scfm)	(in. Hg)	Temperature (°F)	Vacuum (in. Hg)	(in. Hg)	Shallow	Deep	Shallow	Deep	Shallow	Deep	(gallons)	(gpm)
0955					rein de 🕶 (in	W 75 24 32 E.	endered service files. 27 - Luigi € S., LAS P.				新成为在分类		79825	file of the second
1000	1.15	102.46	17.5	194/73	22.5	8.5	0.0	0.0	0.0	0.3	0.0	0.0	79836	2.2
1010	1.15	102.46	17.5	193/72	23.0	5.0	0.0	0.0	0.2	0.0	0.2	0.0	79836	-
1025	1.25	109.00	17.5	195/74	24.0	4.0	0.3	0.0	0.2	0.0	0.2	0.0	79836	-
1040	1.15	102.46	17.5	196/74	24.0	3.0	0.2	0.0	0.1	0.0	0.1	0.0	79836	-
1055	1.10	101.37	17.5	197/75	24.5	3.0	0.2	0.0	0.0	0.0	0.0	0.0	79836	-
1125	1.10	101.37	17.0	198/76	25.0	3.0 /	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1155	1.15	102.46	17.0	199/79	25.0	3,0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1225	1.10	101.37	17.0	200/81	25,0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1255	1.15	102.46	17.5	201/82	24.5	3.0	0.1	0.0	0.1	0.0	0.2	0.0	79836	-
1325	1.15	102.46	17.5	201/83	24.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1330						DILUTION	VALVE COM	PLETELY CL	OSED					
1345	0.10	30.74	27.5	189/88	>30	3.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	- · · · · ·
1400	0.20	43.60	27.0	185/86	>30	4.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1430	0.10	30.74	27.5	183/78	>30	4.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1500	0.05	21.58	27.5	181/76	>30	4.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1530	0.15	37.93	27.5	178/74	>30	4.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	· · · · ·
1600	0.05	21.58	27.0	178/73	>30	4.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	
1628				TPI	SYSTEM S	HUT DOWN, STIN	IGER REMO	VED, SYSTE	M OPERATE	D IN SVE MC	DE			
1634	1.25	109.00	15.0	184/76	19.5	14.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1644	1.10	101.37	17.5	191/73	22.5	16.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1652	0.75	82.84	20.0	193/72	25.5	18.0	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1700	0.45	66.49	22.5	193/70	28.0	21.5	0.0	0.0	0.0	0.0	0.0	0.0	79836	-
1705						SVI	SYSTEM S	HUT DOWN						

NOTES:

Baseline Observations

SVE- Soil vapor extraction

TPE- Two-phase extraction

in, H₂O- Inches of water

scfm- Standard cubic feet per minute

in. Hg- Inches of mercury

°F- Degrees Fahrenheit

gpm- Gallons per minute

OCVOCRWQCB004139

TABLE 1 OPERATION AND PERFORMANCE MONITORING TPE PILOT TEST (DAY 2)

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

		SVE Operation Parameters TPE Well				SVE Operation Parameters TPE Well Groundwater Monitoring Well Vacuum (in. H ₂ O)						Extracted Groundwater		
Time	Air Pressure	Air Flow	Vacuum	Inlet/Outlet	Blower	Casing Vacuum	NM	N-11	NM	W-12	NM	N-13	Volume	Rate
	(in. H₂O)	(scfm)	(in. Hg)	Temperature (°F)	Vacuum (in. Hg)	(in. Hg)	Shallow	Deep	Shallow	Deep	Shallow	Deep	(gallons)	(gpm)
0830	EV. 2-3-5	for Harry		-	y kij∎anis (47.08				497.	79837	
0835	0.45	61.04	20.0	162/60	22.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	79837	-
0845	0.45	62.13	20.0	179/61	23.5	2.5	0.0	0.0	0.0	0.0	0.0	0.0	79847	0.67
0900	0.45	62.20	20.0	186/62	25.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	79847	-
0915	0.45	63.22	20.5	188/64	26.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	79847	-
0930	0.45	63.22	20.5	189/64	26.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	79847	-
1000	0.50	67.58	20.5	191/64	26.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	79858	0.15
1030	0.75	82.84	19.0	193/68	26.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	79858	-
1100	0.90	91.56	18.5	195/72	25.5	7.0	0.0	0.0	0.0	0.0	0.0	0.0	79868	0.17
1130	0.95	93.74	18.5	196/75	26.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	79868	-
1200	1.05	98.10	18.0	197/76	26.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	79868	-
1230	1.05	98.10	18.5	198/77	25.5	5.0	0.0	0.0	0.0	0.0	0,0	0.0	79868	-
1348	0.75	82.84	20.5	199/79	26.5	9.0	0.0	0.0	0.0	0.0	0.0	0.0	79868	
1440					MOVED TO	DEEP SCREENE	D INTERVAL	OF NMW-11	FOR GWE	CTRACTION				
1450	0.80	87.20	20.5	199/76	26.0	0.0	0.0	NA	0.0	0.0	0.0	0.0	79879	1.10
1600	0.80	87.20	20.0	197/73	26.5	0.0	0.0	NA.	0.0	0.0	0.0	0.0	79892	0.19
1615	0.90	91.56	20.0	197/73	26.5	0.0	0.0	NA	0.0	0.0	0.0	0.0	79892	
1625						··· TPE	SYSTEM S	HUT DOWN	TT 15 TT		· Overgenmen e mene unerver			
1645				SVE CON	NECTED TO	SHALLOW SCR	EENED INTE	RVAL OF NA	//W-11, SVE 9	SYSTEM TUP	RNED ON			
1650	1.40	115.54	15.0	192/72	22.0	0.0	0.0	NA	0.8	0.0	0.0	0.0	79900	0.16
1700						SVE	SYSTEM S	HUT DOWN						

NOTES:

Baseline Observations

SVE- Soil vapor extraction

TPE- Two-phase extraction

in. H₂O- Inches of water

scfm- Standard cubic feet per minute

in. Hg- Inches of mercury

°F- Degrees Fahrenheit

gpm- Gallons per minute

NA - Not applicable

TABLE 2 FIELD VAPOR VOC CONCENTRATIONS (PID) TPE PILOT TEST (DAY 1)

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

1000 1005 1010 1015 1020 1025 1030 1035 1040	0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.67	45.2 42.6 37.2 25.5 24.5 26.0	38.3 † 39.9 † 8.8 ‡ 7.8 ‡ 5.8 ‡ 6.9 ‡
1005 1010 1015 1020 1025 1030 1035	0.17 0.25 0.33 0.42 0.50 0.58	42.6 37.2 25.5 24.5 26.0	39.9 [†] 8.8 [‡] 7.8 [‡] 5.8 [‡]
1010 1015 1020 1025 1030 1035	0.25 0.33 0.42 0.50 0.58	37.2 25.5 24.5 26.0	8.8 [‡] 7.8 [‡] 5.8 [‡]
1015 1020 1025 1030 1035	0.33 0.42 0.50 0.58	25.5 24.5 26.0	7.8 [‡] 5.8 [‡]
1020 1025 1030 1035	0.42 0.50 0.58	24.5 26.0	5.8 [‡]
1025 1030 1035	0.50 0.58	26.0	5.8 [‡]
1030 1035	0.58		60‡
1035		`	ש.ס
<u> </u>	0.67	27.7	6.9 [‡]
1040	0.07	28.3	6.2 [‡]
1040	0.75	26.6	5.8 [‡]
1045	0.83	26.9	6.9 [‡]
1050	0.92	27.4	10.2 [‡]
1055	1.00	25.6	9.2 [‡]
1110	1.25	23.9	5.9 [‡]
1125	1.50	20.5	6.7 [‡]
1140	1.45	16.5	3.8
1155	2.00	16.7	0.0
1225	2.50	16.3	3.3
1255	3.00	11.9	0.0
1325	3.50	10.9	0.0
1345	3.83	189.0	0.0
1400	4.08	233.0	0.0
1430	4.58	275.0	0.0
1500	5.08	365.0	0.0
1530	5.58	383.0	0,0
1600	6.08	403.0	0.0
1635	0.12	39.3	3.7 [†]
1645	0.28	28.5	0.0
1653	0.42	38.5	0.0
1700	0.53	60.2	0.0

NOTES:

PID- Photoionization detector

ppmv - Parts per million by volume

At 1330, dilution valve was completely closed

After 1628, system was operated as SVE after pulling the stinger out the well

[†] - Possible cross-contamination from pump head

[‡] - PID readings in ambient air between 2.5 ppm and 5 ppm

TABLE 2 FIELD VAPOR VOC CONCENTRATIONS (PID) TPE PILOT TEST (DAY 2)

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

Time	Operation Period (hours)	PID Meas (pp	
	(ilouio)	Before Carbon Vessels	After Carbon Vessels
0835	0.08	69.1	4.4 [†]
0840	0.17	64.4	2.8 [†]
0845	0.25	58.9	0.0
0850	0.33	56.6	0.0
0855	0.42	54.7	0.2
0900	0.50	52.2	0.0
0905	0.58	51.1	0.0
0910	0.67	50.2	0.2
0915	0.75	49.7	0,0
0920	0.83	51.2	0.0
0925	0.92	49.6	0.0
0930	1.00	49.5	0.2
0945	1.25	54.1	0.0
1000	1.50	19.9	0.0
1015	1.75	29.8	0.0
1030	2.00	40.2	0.0
1100	2.50	27.8	0.0
1130	3.00	26.9	0.0
1200	3.50	20.0	0.0
1230	4.00	19.9	0.0
1300	4.50	19.6	
1330	5.00	30.8	0.0
1405	5.58	28.9	0.0
1453	6.38	6.0	0.0
1458	6.47	7.0	0.0
1503	. 6.55	55.3	0.0
1508	6.63	27.2	0.0
1513	6.72	31.4	0.0
1518	6.80	34.2	0.0
1525	6.92	31.8	0.0
1530	7.00	21.6	0.0
1538	7.13	34.8	0.0
1545	7.25	52.8	0.0
1600	7.50	16.8	0.0
1615	7.75	16.1	0.0
1650	8.33	>9999*	0.0

NOTES:

PID- Photoionization detector

ppmv - Parts per million by volume

At 1440, started extracting groundwater from deep screened interval of NMW-11

**At 1645, SVE connected to shallow screened interval of NMW-11

†- High PID reading might be due to high humidity in the morning

TABLE 3 LABORATORY VAPOR INLET VOC CONCENTRATIONS TPE/SVE PILOT TEST

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

<u></u>							· · · · · · · · · · · · · · · · · · ·			
Site ID:	INLET-A	INLET-A	INLET-A	INLET-B	INLET-B	INLET-B	INLET-B	INLET-C	INLET-C	INLET-C
	Inlet-	Inlet-	inlet-	Inlet-	Inlet-	Inlet-	Inlet-	iniet-	Inlet-	Inlet-
Sample ID:	102406-A	102506-A	102606-A	102406-B	102406-B-	102506-B	102606-B	102406-C	102506-C	102606-C
Sample Date:	10/24/06	10/25/06	10/26/06	10/24/06	10/24/06	10/25/06	10/26/06	10/24/06	10/25/06	10/26/06
Method:						-15				
Units:					pp	bv				
ANALYTE										
Acetone	38	19	ND<3300	43	37	19	3700	4000 D	15	ND<3600
Benzene	1.1	1.0	ND<830	0.53	ND<0.50	0.66	ND<900	6.9	0.71	ND<900
Benzyl chloride	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
Bromoform	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
Bromomethane	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
Carbon disulfide	3.4	3.0	ND<830	3.1	3.1	3.4	ND<900	4.1	3.3	ND<900
Carbon Tetrachloride	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
Chlorobenzene	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
Chloroethane	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
Chloroform	0.65	2.6	ND<830	0.78	0.73	1.1	ND<900	35	0.81	ND<900
Chloromethane	0.70	0.58	ND<830	0.68	0.79	0.57	ND<900	ND<4.0	0.58	ND<900
Dibromochloromethane	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
1,2-Dibromoethane (ED8)	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
1,2-Dichlorobenzene	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
1,3-Dichlorobenzene	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
1,4-Dichlorobenzene	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
Dichlorobromomethane	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	3100
1,1-Dichloroethane	2.4	9.3	1600	3.1	2.8	3.6	1800	130	3.3	1200
1,2-Dichloroethane	0.51	2.2	ND<830	0.54	ND<0.50	0.65	ND<900	21	ND<0.50	ND<900
1,1-Dichloroethene	370 D	1400 D	540000 D	510 D	410 D	1400 D	600000 D	25000 D	1300 D	580000 D
cis-1,2-Dichloroethene	ND<0.50	2.9	ND<830	0.62	0.59	0.99	ND<900	28	1.3	ND<900
trans-1,2-Dichloroethene	ND<0.50	1.7	ND<830	ND<0.50	ND<0.50	0.67	ND<900	24	1.6	ND<900
1,2-Dichloropropane	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
cis-1,3-Dichloropropene	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	ND<0.50	ND<900
trans-1,3-Dichloropropene	- ND<1.0	- ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
4-Ethyl Toluene	41	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	27	ND<0.50	ND<900
Ethylbenzene	19	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	17_	ND<0.50	ND<900
Freon 11 (Trichlorofluoromethane)	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
Freon 113 (1,1,2-trichloro-1,2,2-trifluo	ND<1.0	2.4	ND<1700	ND<1.0	ND<1.0	1.1	ND<1800	37	ND<1.0	ND<1800
Freon 114 (1,2-Dichlorotetrafluoroethane	ND<2.0	ND<2.0	ND<3300	ND<2.0	ND<2.0	ND<2.0	ND<3600	ND<16	ND<2.0	ND<3600
Freon 12 (Dichlorodifluoromethane)	0.63	0.71	ND<830	0.60	0.63	0.55	ND<900	ND<4.0	0.53	ND<900
Hexachlorobutadiene	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
2-Hexanone	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
Methyl Ethyl Ketone	43	26	ND<1700	45	36	12	ND<1800	360	7.7	ND<1800
Methyl isobutyl ketone (MIBK)	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
Methyl Tert-butyl ether (MTBE)	ND<2.0	ND<2.0	ND<3300	ND<2.0	ND<2.0	ND<2.0	ND<3600	ND<16	ND<2.0	ND<3600
Methylene chloride	12	16	62000	ND<10	ND<10	13	83000	ND<80	12	50000
Styrene	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	2100	ND<8.0	ND<1.0	3100
1,1,2,2-Tetrachloroethane	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
Tetrachloroethene	110 D	1300 D	140000 D	170 D	140 D	590 D	210000 D	4300 D	260 D	180000 D
Toluene	14	2.4	3000	2.8	2.0	2.6	4300	15	1.8	5600
1,2,4-Trichlorobenzene	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
1,1,1-Trichloroethane	30	150 D	19000	37	26	40	23000	1900 D	29	16000
1,1,2-Trichloroethane	0.83	5.5	ND<830	1.2	1.5	1.6	ND<900	34	1.2	ND<900
Trichloroethene	330 D	3400 D	550000 D	600 D	460 D	1700 D	680000 D	23000 D	1700 D	600000 D
1,2,4-Trimethylbenzene	68 D	1.1	ND<1700	1.8	ND<1.0	ND<1.0	ND<1800	140	ND<1.0	ND<1800
1,3,5-Trimethylbenzene	20 D	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	42	ND<0.50	ND<900
Vinyl Acetate	ND<1.0	ND<1.0	ND<1700	ND<1.0	ND<1.0	ND<1.0	ND<1800	ND<8.0	ND<1.0	ND<1800
Vinyl Chloride	ND<0.50	ND<0.50	ND<830	ND<0.50	ND<0.50	ND<0.50	ND<900	ND<4.0	0.85	ND<900
o-Xylene	23 D	0.53	ND<830	0.88	ND<0.50	0.52	ND<900	54	ND<0.50	ND<900
p/m-Xylene	88	1.1	ND<1700	1.9	1.1	1.3	ND<1800	79	ND<1.0	2100

NOTES:
ID- Sample identification
ppb- Parts per billion by volume
ND<0.5- Analyte not detected at reporting limit shown
The "D" flag indicates the result is from a diluted sample

TABLE 4 VOLATILE ORGANIC COMPOUND CONCENTRATIONS IN EXTRACTED GROUNDWATER TPE PILOT TEST

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

	GW-EFFL- NMW02A	GW-EFFL- NMW11	IDW-061026
Sample ID:	GW-102406	GW-102506	COMP-102606
Sample Date: Method:	10/24/06	10/25/06 8260B	10/26/06
Units:		μg/l	
ANALYTE		T	
Acetone	ND<100	ND<50	ND<50
Benzene	ND<1.0	ND<0.50	ND<0.50
Bromobenzene	ND<2.0	ND<1.0	ND<1.0
Bromochloromethane	ND<2.0	ND<1.0	ND<1.0
Bromoform	ND<2.0	ND<1.0	ND<1.0
Bromomethane n-Butylbenzene	ND<2.0 ND<2.0	ND<10 ND<1.0	ND<10 ND<1.0
ec-Butylbenzene	ND<2.0	ND<1.0	ND<1.0
Carbon disulfide	ND<2.0	ND<1.0	ND<10
Carbon Tetrachloride	ND<1.0	ND<0.50	ND<0.50
Chlorobenzene	ND<2.0	ND<1.0	ND<1.0
Chloroethane	ND<2.0	ND<1.0	ND<1.0
Chloroform	ND<2.0	ND<1.0	ND<1.0
Chloromethane	ND<20	ND<10	ND<10
2-Chlorotoluene	ND<2.0	ND<1.0	ND<1.0
1-Chlorotoluene	ND<2.0	ND<1.0	ND<1.0
1,2-Dibromo-3-chloropropane	ND<10	ND<5.0	ND<5.0
Dibromochloromethane 1,2-Dibromoethane (EDB)	2.3 ND<2.0	ND<1.0 · ND<1.0	ND<1.0 ND<1.0
Dibromomethane	ND<2.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	ND<2.0	ND<1.0	ND<1.0
1,3-Dichlorobenzene	ND<2.0	ND<1.0	ND<1.0
1,4-Dichlorobenzene	ND<2.0	ND<1.0	ND<1.0
Dichlorobromomethane	2.8	ND<1.0	ND<1.0
1,1-Dichloroethane	ND<2.0	ND<1.0	ND<1.0
1,2-Dichloroethane	ND<1.0	ND<0.50	0.81
1,1-Dichloroethene	ND<2.0	1.4	32
cis-1,2-Dichloroethene	ND<2.0	ND<1.0	ND<1.0
rans-1,2-Dichloroethene 1,2-Dichloropropane	ND<2.0 ND<2.0	ND<1.0 ND<1.0	ND<1.0 ND<1.0
1,3-Dichloropropane	ND<2.0	ND<1.0	ND<1.0
2,2-Dichloropropane	ND<2.0	ND<1.0	ND<1.0
1,1-Dichloropropene	ND<2.0		ND<1.0
cis-1,3-Dichloropropene	ND<1.0	ND<0.50	ND<0.50
rans-1,3-Dichloropropene	ND<1.0	ND<0.50	ND<0.50
Ethylbenzene	ND<2.0	ND<1.0	ND<1.0
Freon 11 (Trichloroffuoromethane)	ND<20	ND<10	ND<10
Freon 113 (1,1,2-trichloro-1,2,2-trifluo	ND<20	ND<10	ND<10
Freon 12 (Dichlorodifluoromethane)	ND<2.0 ND<20	ND<1.0 ND<10	ND<1.0 ND<10
2-Hexanone Isopropylbenzene	ND<2.0	ND<1.0	ND<10
p-Isopropyltoluene	ND<2.0	ND<1.0	ND<1.0
Methyl Ethyl Ketone	250	ND<10	ND<10
Methyl isobutyl ketone (MIBK)	ND<20	ND<10	ND<10
Methyl Tert-butyl ether (MTBE)	ND<2.0	ND<1.0	ND<1.0
Methylene chloride	ND<20	ND<10	ND<10
Naphthalene	ND<20	ND<10	ND<10
n-Propylbenzene	ND<2.0	ND<1.0	ND<1.0
Styrene	ND<2.0	ND<1.0	ND<1.0
tert-Butylbenzene 1,1,1,2-Tetrachloroethane	ND<2.0 ND<2.0	ND<1.0 ND<1.0	ND<1.0 ND<1.0
1,1,1,2-1 etrachioroethane	ND<2.0	ND<1.0	ND<1.0
Tetrachloroethene	ND<2.0	1.1	18
Toluene	ND<2.0	ND<1.0	ND<1.0
1,2,3-Trichlorobenzene	ND<2.0	ND<1.0	ND<1.0
1,2,4-Trichlorobenzene	ND<2.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	ND<2.0	. ND<1.0	3.5
1,1,2-Trichloroethane	ND<2.0	ND<1.0	2.5
Trichloroethene	ND<2.0	6.6	140
1,2,3-Trichloropropane	ND<10	ND<5.0	ND<5.0
1,2,4-Trimethylbenzene	ND<2.0	ND<1.0	ND<1.0
1,3,5-Trimethylbenzene Vinyl Acetate	ND<2.0 ND<20	ND<1.0 ND<10	ND<1.0 ND<10
Vinyl Chloride	ND<1.0	ND<10 ND<0.50	ND<0.50
o-Xylene	ND<1.0	ND<0.50	ND<0.50
p/m-Xylene	ND<2.0	ND<1.0	ND<1.0

NOTES:
ID- Sample identification
µg/L- Micrograms per liter
ND<1.0- Analyte not detected at reporting limit shown
COMP-102606 is a composite sample taken from the extracted groundwater storage tank

OCVOCRWQCB004144

TABLE 5 SUMMARY OF GROUNDWATER WELL MEASUREMENTS TPE PILOT TEST (DAY 1)

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

	Operation Period		NMW-11	P.		NMW-12		NMW-13				
Time	(hours)	Depth to Water (feet bgs)	Drawdown (feet)	Elevation (feet msl)	Depth to Water (feet bgs)	Drawdown (feet)	Elevation (feet msl)	Depth to Water (feet bgs)	Drawdown (feet)	Elevation (feet msl)		
0955	.0.	76.53	0.00	84.96	78.66	0.00	82.57	77.35	0.00	83.88		
1010	0.25	76.57	0.04	84.92	78.58	-0.08	82.65	77.30	-0.05	83.93		
1055	1	76.58	0.05	84.91	78.52	-0.14	82.71	77.28	-0.07	83.95		
1155	2	76.6	0.07	84.89	78.47	-0.19	82.76	77.23	-0.12	84.00		
1255	3	76.57	0.04	84.92	78.41	-0.25	82.82	77.19	-0.16	84.04		
1430	4.58	76.57	0.04	84.92	78.35	-0.31	82.88	77.13	-0.22	84.10		
1530	5.58	76.55	0.02	84.94	78.31	-0.35	82.92	77.11	-0.24	84.12		

NOTES:

Baseline Observations

bgs - Below ground surface

msl - Mean sea level

At 1330, dilution valve was completely closed

OCVOCRWQCB004145

TABLE 5 SUMMARY OF GROUNDWATER WELL MEASUREMENTS TPE PILOT TEST (DAY 2)

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

	Operation Period		NMW-11	8		NMW-12		NMW-13				
Time	(hours)	Depth to Water (feet bgs)	Drawdown (feet)	Elevation (feet msl)	Depth to Water (feet bgs)	Drawdown (feet)	Elevation (feet msl)	Depth to Water (feet bgs)	Drawdown (feet)	Elevation (feet msl)		
0830	0	76.60	0.07	84,89	77.90	-0.76	83,33	76.92	-0.43	84.31		
0930	1	76.62	0.09	84.87	77.86	-0.80	83.37	76.91	-0.44	84.32		
1030	2	76.66	0.13	84.83	77.85	-0.81	83.38	76.91	-0.44	84.32		
1130	3	76.68	0.15	84.81	77.81	-0.85	83.42	76.90	-0.45	84.33		
1230	4	76.69	0.16	84.80	77.80	-0.86	83.43	76.89	-0.46	84.34		
1348	5.30	76.68	0.15	84.81	77.77	-0.89	83.46	76.85	-0.50	84.38		
1450	6.33	-	-	-	77.75	-0.91	83.48	76.84	-0.51	84.39		
1615	7.75	-	-	- 1	77.75	-0.91	83.48	76.84	-0.51	84.39		

NOTES:

Baseline Observations

bgs - Below ground surface

msl - Mean sea level

At 1440, started extracting groundwater from deep screened interval of NMW-11

TABLE 6 OPERATION AND PERFORMANCE MONITORING SVE PILOT TEST

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

		SVE	Operation Parar	neters		TPE Well		Gro	oundwater Monit (in. i	toring Well Vacu H ₂ O)	um ·	
Time	Air Pressure	Air Flow	Vacuum	Inlet/Outlet	Blower	Casing Pressure		NMW-11	NM	V-12	NM	N-13
	(in. H ₂ O)	(scfm)	(in. Hg)	Temperature (°F)	Vacuum (in, Hg)	(in. Hg)	NMW-2A	Deep	Shallow	Deep	Shallow	Deep
0750	10.205			PAG PERK	The state of the state of				新学 X 新書館			
0755	1.05	95.92	18.0	168/68	20.0	1.0	0.0	5.5	1.0	0.0	0.6	0.0
0805	1.00	94.83	18.0	185/69	20.5	1.0	0.3	5.9	1.2	0.0	0.7	0.0
0820	1.10	101.37	18.0	192/71	20.5	1.0	0,5	6.7	1.5	0.0	1.0	0.0
0835	1.15	103.55	18.5	195/73	21.5	1.0	0,7	6.8	1.7	0.0	1.1	0,0
0850	1.15	103.55	19.0	197/74	23.0	1.0	0.8	7.4	1.8	0.0	1.4	0.0
0920	1.25	109.00	17.5	198/77	22.5	1.0	1.1	8.4	2.2	0.0	1.5	0.0
0950	1.25	109.00	17.5	200/78	22.5	1.0	1.1	8.4	2.2	0.0	1.5	0.0
1000					INLET	VACUUM DECRE	ASED TO 10	IN. HG				
1015	2.10	141.70	10,0	194/82	15.5	1.0	1.7	14.2	3.2	2.9	2.0	0.0
1030	2.05	139.52	10.0	193/84	15.5	1.0	1.7	14.3	3.2	3.0	2.0	0.0
1045	2.05	139.52	10.0	193/86	16.0	0.0	1.9	14.4	3,3	3.1	2.1	0.0
1100	2.00	138,43	10.0	193/87	15.5	0.0	1,9	14.4	3.4	3.0	2.2	0.0
1130	2.05	139.52	10.5	195/88	16.0	0.0	2.0	14.3	3.4	3.1	2.3	0.0
1200	2.10	141.70	10.5	196/91	16.5	0.0	1.9	14.2	3.4	3.1	2.2	0.0
1215					INLET	VACUUM INCREA	SED TO 12.5	IN. HG				
1230	1.80	130.80	12.5	200/91	17.5	0.0	1.8	12.6	3,1	2.5	2,1	0.0
1245	1.80	130.80	12.5	201/92	17,5	0,0	1.7	12.4	3	2.4	2	0.0
1315	1.80	130.80	12.5	201/92	17.0	0.0	1.7	12.3	2.9	2.1	1.9	0.0
1345	1.85	132.98	12.5	202/93	17.5	0.0	1.6	12.2	2.8	1.6	1.7	0.0
1415	1.85	132.98	13.0	202/92	17.5	0.0	1.3	11.7	2.5	1.3	1.5	0.0
1420					INLET	VACUUM INCREA	ASED TO 15	IN. HG			,	
1435	1.55	120.99	15.0	204/88	19.5	0.0	1.3	10.0	2.3	1.7	1.3	0.0
1450	1.60	123.17	15.0	205/88	20.0	0.0	1.2	9.9	2.2	1.1	1.3	0.0
1505	1.55	120.99	15.0	205/89	20.0	0.0	0.8	9.9	2.2	1.2	1.3	0,0
1520	1.50	119.90	15.0	205/88	20.0	0.0	1.2	9.8	2.2	1.3	1.2	0.0
1550	1.55	120.99	15.0	203/87	19.5	0.0	1.1	9.7	2.1	1.7	1.2	0.0
1620	1.50	120,99	15.0	203/88	20.5	0.0	0.9	9.5	1.9	0.8	1.1	0.0
1630						SVE SYSTEM SH	HUT DOWN		-			

NOTES:

Baseline Observations

SVE- Soil vapor extraction

TPE- Two-phase extraction

in. H₂O- Inches of water

scfm- Standard cubic feet per minute

in. Hg- Inches of mercury

°F- Degrees Fahrenheit

gpm- Gallons per minute

TABLE 7 FIELD VAPOR VOC CONCENTRATIONS (PID) SVE PILOT TEST

NORTHROP GRUMMAN SYSTEMS CORPORATION FORMER Y-12 FACILITY, ANAHEIM, CA

Time	Operation Period (hours)	PID Meas (pp			
	(Before Carbon Vessels	After Carbon Vessels		
0755	0.08	>9999	1.0		
0800	0.17	>9999	0.0		
0805	0.25	>9999	0.0		
0810	0.33	>9999	0.0		
0815	0.42	>9999	0.0		
0820	0.50	>9999	0.0		
0825	0.58	>9999	0.0		
0830	0.67	>9999	0.0		
0835	0.75	>9999	0.0		
0840	0.83	>9999	0.0		
0845	0.92	>9999	0.0		
0850	1.00	>9999	0.0		
0905	1.25	>9999	0.0		
0920	1.50	>9999	0.0		
0935	1.75	>9999	0.0		
0950	2.00	>9999	0.0		
1015	2.42	>9999	. 0.0		
1030	2.67	>9999	0.2		
1045	2.92	>9999	0.4		
1100	3.17	>9999	0.5		
1130	3.67	>9999	1.4		
1200	4.17	>9999			
1230	4.67	>9999	0.6		
1245	4.92	>9999	0.8		
1300	5.17	>9999	1.2		
1315	5.42	>9999	1.7		
1345	5.92	>9999	0.9		
1415	6.42	>9999	1.9		
1435	6.75	>9999	0.8		
1450	7.00	>9999	0.9		
1505	7.25	>9999	0.9		
1520	7.50	>9999	0.8		
1550	8.00	>9999	1.2		
1620	8.50	>9999	1.2		

NOTES:

PID- Photoionization detector ppmv - Parts per million by volume

ARCADIS BBLES

Figures

Figure 3
VOC Inlet Concentrations and Removal on Day 1
TPE Pilot Test

Figure 4
VOC Inlet Concentrations and Removal on Day 2
TPE Pilot Test

Figure 5
Groundwater Elevation and Drawdown in Monitoring Wells on Day 1
TPE Pilot Test

Figure 6
Groundwater Elevation and Drawdown in Monitoring Wells on Day 2
TPE Pilot Test

Figure 7
VOC Inlet Concentrations and Removal
SVE Pilot Test

Figure 8
Effect of Inlet Vacuum & Well Distance on Vacuum Observed in Shallow Monitoring Wells
SVE Pilot Test

Figure 9
Effect of Inlet Vacuum & Well Distance on Vacuum Observed in Deep Monitoring Wells
SVE Pilot Test

ARCADIS BBLES

Appendices

ARCADIS BBLES Appendix A Well Construction Logs OCVOCRWQCB004162 Date Start/Finish: 10/9/2006-10/9/2006 Drilling Company: Cascade Drilling, Inc.

Driller's Name: Orville Waters
Drilling Method: HSA

Bit Size: 6" OD Auger Size: 8" OD

Rig Type: CME-85

Sampling Method: 2" ID Split Spoon

Northing: NM Easting: NM

Casing Elevation: NM

Borehole Depth: 95' bgs Surface Elevation: NM

Description By: Maher Zein

Well/Boring ID: NMW-11

Client: Northrop Grumman

Former Y-12 Facility Anaheim, CA

Location: 301 E. Orangethorpe Ave.

Anaheim, CĂ

Project: 37134.002 Data File: NMW-11.dat Template: F:\ibm\NORTHROP\Y12 Anaheim\6 Notes and Data\Anaheim 2006.ldf

Date: 03/07/2007

Page: 1 of 2

Date Start/Finish: 10/9/2006-10/9/2006 Drilling Company: Cascade Drilling, Inc.

Driller's Name: Orville Waters Drilling Method: HSA

Bit Size: 6" OD Auger Size: 8" OD

Rig Type: CME-85

Sampling Method: 2" ID Split Spoon

Northing: NM Easting: NM

Casing Elevation: NM

Borehole Depth: 95' bgs Surface Elevation: NM

Description By: Maher Zein

Well/Boring ID: NMW-11

Client: Northrop Grumman

Former Y-12 Facility Anaheim, CA

Location: 301 E. Orangethorpe Ave. Anaheim, CA

DEPTH		Sample Run Number	Interval Sampled	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N-value	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
- - - 50		NA	NA	NA		NA	NA				
- - - - - - - - -									F		#2/12 Sand (28' - 72')
60					7.1			SP-SC		SAND with Silt (SP-SM), olive brown (2.5Y 4/3), molst, medgrained sand, trace gravel	
- 65 -											2" Dlam, Sch 40 PVC Casing
70		gr - 1	v.:		. ,			- 27 - 21 - 21	e v 141.7	та им потружения и поточети и ими от выполнения праводения по выполняе выпуского на выпуского на продела и на В применения	
75			and the grown		a vas-						— Bentonite Seal
80	-				2.7			SP-SN		SAND with Clay (SP-SC), dark olive brown (2.5Y 3/3), moist, med to coarse-grained sand, trace gravel	
- 85	-										2" Diam, 0.010 Slot Screen, Sch 40 PVC (80' - 95')
90	-										
- - - 95 -	- - -	-								Terminate borehole at 95' bgs. Construct groundwater monitoring well.	
			3					® Jany		Remarks: bgs = below ground surface SAA = Sam ID = Inside diameter med. = Med.	dium bw Stem Auger pplicable/Available 55' bgs brvals. See nearby wells NMW-12

Project: 37134.002 Data File: NMW-11.dat Template: F:\ibm\NORTHROP\Y12 Anaheim\6 Notes and Data\Anaheim_2006.ldf

Date: 03/07/2007

Page: 2 of 2

Date Start/Finish: 10/5/2006-10/5/2006 Drilling Company: Cascade Drilling, Inc.

Driller's Name: Todd Mecham **Drilling Method: Sonic**

Bit Size: 6" OD Auger Size: NA Rig Type: Sonic 50K Sampling Method: NA Northing: NM Easting: NM

Casing Elevation: NM

Borehole Depth: 95' bgs Surface Elevation: NM

Description By: Colin Enssle

Well/Boring ID: NMW-12

Client: Northrop Grumman

Former Y-12 Facility Anaheim, CA

Location: 301 E. Orangethorpe Ave.

Anaheim, CĂ

Project: 37134.002 Data File: NMW-12.dat Template: F:\ibm\NORTHROP\Y12 Anaheim\6 Notes and Data\Anaheim_2006.ldf

Date: 03/07/2007

Page: 1 of 2

Date Start/Finish: 10/5/2006-10/5/2006 Drilling Company: Cascade Drilling, Inc.

Driller's Name: Todd Mecham Drilling Method: Sonic

Bit Size: 6" OD Auger Size: NA Rig Type: Sonic 50K Sampling Method: NA Northing: NM Easting: NM

Casing Elevation: NM

Borehole Depth: 95' bgs Surface Elevation: NM

Description By: Colin Enssle

Well/Boring ID: NMW-12

Client: Northrop Grumman

Former Y-12 Facility Anaheim, CA

Location: 301 E. Orangethorpe Ave. Anaheim, CA

ОЕРТН	Sample Run Number	Interval Sampled	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N-value	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
	NA	NA		145 565	NA	NA			Increasing coarse-grained sand	
- 50				813 517					Increasing very fine- to fine-grained sand, micaceous	
	7			1084 145			ML		Sandy SILT (ML), dark brown with red-brown mottling, med. dense, moist, trace clay, very fine- to fine-grained sand, no odor	
	1			328 127			SP	:::	SAND (SP), light brown, very loose, moist, trace silt, very fine- to fine-grained sand, trace coarse-grained sand and gravel	#2/12 Sand (28' - 72')
- 55	1			464		ļ	CM		SAA, becomes drier, no coarse-grained sand, no gravel	
				473 126 820			SM		Silty SAND (SM), olive, loose, moist, 20% silt, very fine- to fine-grained sand, micaceous, no odor	
- 60]			1563				ŢŢ.	SAA, med. dense, 50% silt	
00	-			411 393				ΞΞ	SAA, dark brown to dark gray, dense, 20% clay	
				540 203				T.T.	Silty SAND (SM), olive gray, loose, moist, very fine- to medgrained sand, micaceous, no odor	
- 65				144 87			SP		SAND (SP), light olive brown, loose, moist, trace silt, fine- to medgrained sand, no odor	2" Diam, Sch 40 PVC Casing
	1			141 491			CL	=	Silty CLAY (CL), dark brown with gray mottling, firm, moist, trace fine- to medgrained sand, no odor	
- 70				751 482	AE IO LE		SM		Silty SAND (SM), olive brown, loose, moist, 20% silt, very fine- to med grained sand, no odor	
				1445 88			ML	T.	Sandy SILT (ML), dark brown, med. dense, moist, very fine- to fine-grained sand, no odor	
	-			239 136					SAA, dense, increasing medgrained sand, trace coarse-grained sand	
- 75	1			94 45			CL		Sity CLAY (CL), dark brown with gray mottling, med. dense, moist, trace med and coarse-grained sand	- Bentonite Seal
]			74 61					SAA, less silt, dense clay	
- 80	1			226 383			ML	- T	Sandy CLAY (CL), mottled dark gray and brown, firm, moist, 20% silt, very fine- to medgrained sand, trace coarse-grained sand and fine gravel, no odor	
	-			770 60					Sandy SILT (ML), dark brown, firm, moist, 10% clay, very fine- to fine- grained sand, no odor	
	-			118 126			CL		Sandy CLAY with Silt (CL), dark brown with dark gray mottling, dense, moist,	
- 85				83.4 30.2					fine- to med grained sand, trace coarse-grained sand, fine gravel	2" Diam, 0.010 SI Screen, Sch 40
	1			87.4 38.7						PVC (80' - 95')
- 90	1			56.3			ML	1111	Sandy SILT (ML), dark brown, firm, moist, 30% clay, very fine- to med	
	-			67.8 83.5					grained sand, 10% coarse-grained sand, trace fine gravel, no odor SAA, no trace fine gravel	
	-			48.4						
- 95	-			44.7					Terminate borehole at 95' bgs. Construct groundwater monitoring well.	
	F	3	F	3			* 		Remarks: bgs = below ground surface ID = inside diameter OD = outside diameter OM = Not Measured SAA = Same med. = mediumed. = mediumed. = HSA = Hollow NA = Not App	im

Project: 37134.002 Data File: NMW-12.dat Template: F:\ibm\NORTHROP\Y12 Anaheim\6 Notes and Data\Anaheim_2006.ldf

Date: 03/07/2007

Page: 2 of 2

Date Start/Finish: 10/3/2006-10/4/2006 Drilling Company: Cascade Drilling, Inc.

Driller's Name: Todd Mecham **Drilling Method:** Sonic

Bit Size: 6" OD Auger Size: NA Rig Type: Sonic 50K Sampling Method: NA Northing: NM Easting: NM

Casing Elevation: NM

Borehole Depth: 95' bgs Surface Elevation: NM

Description By: Colin Enssle

Well/Boring ID: NMW-13

Client: Northrop Grumman

Former Y-12 Facility
Anaheim, CA

Location: 301 E. Orangethorpe Ave.

Anaheim, CA

Project: 37134.002 Data File: NMW-13.dat Template: F:\ibm\NORTHROP\Y12 Anaheim\6 Notes and Data\Anaheim_2006.ldf

Date: 03/07/2007

Date Start/Finish: 10/3/2006-10/4/2006 Drilling Company: Cascade Drilling, Inc.

Driller's Name: Todd Mecham
Drilling Method: Sonic

Bit Size: 6" OD Auger Size: NA Rig Type: Sonic 50K Sampling Method: NA Northing: NM Easting: NM

Casing Elevation: NM

Borehole Depth: 95' bgs Surface Elevation: NM

Description By: Colin Enssle

Well/Boring ID: NMW-13

Client: Northrop Grumman

Former Y-12 Facility Anaheim, CA

Location: 301 E. Orangethorpe Ave. Anaheim, CA

ОЕРТН	Sample Run Number	Interval Sampled	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N-value	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-				86.0	•					
- - 50] NA	NA		57.9 67.3		NA	ML.	===	Sandy SILT (ML), olive gray with brown mottling, firm, moist, clay, very fine- to fine-grained sand, no odor	
- 50	-			31.0 178.0			SP		SAND (SP), brownish red, loose, moist, fine- to medgrained sand, trace silt	
-	-			51.1 89.7					SAND (SP), light brown, loose, moist, fine- to medgrained sand, no odor, 5% cemented fraction	#2/12 Sand
- 55	1			89.9 199					SAA, becomes brown with 10% brown clay lenses throughout	(28' - 72')
-	-			264 173			SP-SM		SAND with Silt (SP-SM), dark brown, med. dense, moist, very fine- to fine- grained sand, crumbly, no odor SAA, becomes light brown	
<u>-</u>	1			80.1			SP		SAA, becomes light brown SAND (SP), med. dense, trace clay, little silt, very fine- to fine-grained sand, subrounded, no odor	
- 60	-			90.8 77.6				::::	SAND (SP), light brown, loose, moist, fine- to medgrained sand	
	-			78.4 74.0			SP-SM		SAND with Silt (SP-SM), dark brown, med. dense, moist, 25% clay, very fine- to fine-grained sand, trace med. grained sand	
[]			100 54.6						
− 65 -	-			180 47.3			SP	::::	SAND (SP), brownish red, loose, moist, trace silt, fine- to medgrained sand	2" Diam, Sch 40 PVC Casing
-	1			124 71			SP-SC	···	SAA, gray mottling, med. dense, fine-grained sand	
70		en 1, 194		132 73.4	177		SP		SAND with Clay (SP-SC), light brown, loose, moist, 10% clay, fine- to med- grained sand, little fine gravel SAND (SP), dark brown, med. dense, moist, fine- to med-grained sand, trace	
	-			83.8	pronon	10000	SP-SM	···	fine gravel SAND with Silt (SP-SM), loose, fine-grained sand, trace fine gravel	The state of the s
_	1			22.1 12.1					SAA, dark brown, 20% clay, very fine-grained sand, trace coarse-grained sand	
- 75	-			23.4 23.9			CL	===	Sandy CLAY (CL), dark brown, firm, moist, very fine- to medgrained sand	Bentonite Seal
	+			34.4 100			SP		SAND (SP), light brown to red, loose, moist, trace clay, fine- to medgrained	
F]			25.9 41.4		!			sand	
<u>-</u> 80 -	1			33.2					SAND (SP), olive gray with brown mottling, loose, moist, trace clay and silt lenses, fine- to medgrained sand, little coarse-grained sand, no odor	
ļ				99.7			1		e e e e e e e e e e e e e e e e e e e	
- 85	_								Sandy CLAV (CLAV grow firm majet fine to mad grained and trans course	0# Diam 0.040 Slat
_	1						CL	-7-	Sandy CLAY (CL), gray, firm, moist, fine- to medgrained sand, trace coarse- grained sand, no odor	2" Díam, 0.010 Slot Screen, Sch 40 PVC (80' - 95')
	1							-7-	SAA, becomes dark brown	
90	-							-72-		
-	7							-7-		
	7							-7-		
├- 95 -	1			1					Terminate borehole at 95' bgs. Construct groundwater monitoring well.	_
-	A an	3								um v Stem Auger plicable/Available

Project: 37134.002 Data File: NMW-13.dat Template: F:\ibm\NORTHROP\Y12 Anaheim\6 Notes and Data\Anaheim_2006.ldf

Date: 03/07/2007

Page: 2 of 2

ARCADIS BBLES

Appendix B

Well Permits

CITY OF ANAHEIM

PUBLIC UTILITIES DEPARTMENT ENVIRONMENTAL SERVICES DIVISION

201 S. Anaheim Blvd., Suite 601, Anaheim, CA 92805 714/765-4112, Fax: 714/765-4135

WELL PERMIT

TYPE OF PERMIT: CONSTRUCTION C	DESTRUCT	ION	DATI	E: Aug 28	3, 2006
LOCATION OF WELL(S): Former Y-12 Facility, Northrop Grumma	n Corp., 301 Ora	angethorpe A	ve., Anahein	n, CA 92801	-1032
APPLICANT'S NAME: Norbert Schulz	WELL OWNER Michael Marti		ual's Name)		
COMPANY: BBL, Inc.	COMPANY: (if a Northrop Grui		ration		
ADDRESS: 4445 Eastgate Mall, Suite 200	ADDRESS: One Hornet W	/ay	19 10 10 10 10 10 10 10 10 10 10 10 10 10	All Suppression and Associated State (1977) and a Suppression (1977) an	MARK MARK AND
City: San Diego	CITY: El Segundo	·			
STATE: ZIP: CA 92121	STATE: CA			ZIP: 90245	
PHONE: 858.812.2037	PHONE: 301.331.1766				
OPEN UST CLEANUP CASE? O YES No	PROPOSED W	ELL(S) 4 we	lls total: 3 ne	ested monito	oring, 1 CMT
LOCATION MAP (Submit 2 copies of site plans) Office use only	Well ID	Туре	DIAM (INCHES)	DEPTH (FEET)	SCREEN
E FREEDOM AVE NO TO SCALE -	NMW-11 A,B	Monitoring	8 inches	95 ft bgs	30-70', 80-95'
	NMW-12 A,8	Monitoring	8 inches	95 ft bgs	30-70', 80-95'
	NMW-13 A,B	Monitoring	8 inches	95 ft bgs	30-70', 80-95'
	CMT-01 A,B,C,D	СМТ	6 inches	200 ft bgs	85-95', 120-
TUBERTY ANT.					130', 150-16 <u>6</u> 190-200'.
E ORANCETHORPE AVE.	LENGTH OF TI	ME WELL TO F	REMAIN IN US	SE: 7.	4 RS
APPLICANT SHALL NOTIFY THE CITY OF ANAHEIM AT LEAST 48 HOURS PRIOR TO CONDUCTING FIELD ACTIVITIES AT 714/765-4591	WELL FEE	\$100 per permit,	\$75 per well (u	p to 10 wells pe	
I HEREBY AGREE TO COMPLY WITH ALL ORDINANCES, RULES AND REGULATIONS OF THE CITY OF ANAHEIM AND THE STATE OF	l _			DDIZED:	
CALIFORNIA PERTAINING TO WELL CONSTRUCTION AND DESTRUCTION. I ATTEST THAT I AM AUTHORIZED TO SIGN ON BEHALF OF THE PROPERTY OWNER AND/OR WELL OWNER.	PAYMENT REC	EIVED WUD FI	EKWII AÇIHC	JRIZEU.	
All / 1111.	-	7		0.10	. /
APPLICANT'S SIGNATURE DATE	AUTHORIZING	ACENT		9-15- DA	
APPLIANT S SIGNATURE	UNLESS SIGN	ED AND DATE			
INSPECTED BY DATE		Wei	LL PERMIT NO	108	is .

<u>.</u>

: ... ARCADIS BBLES

Appendix C

AQMD Permit

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bur. CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 1 Permit No. R-F45563 A/N 390569

ID 121810

This initial permit must be renewed ANNUALLY unless the equipment is moved, or changes ownership. If the billing for annual renewal fee (Rule 301.f) is not received by the expiration date, contact the District.

LEGAL OWNER

OR OPERATOR:

SLABY SALES COMPANY

P O BOX 903

BORREGO SPRINGS, CA 92004

Equipment Location:

VARIOUS LOCATIONS

Equipment Description:

UNDERGROUND CONTAMINATED SOIL VAPOR EXTRACTION AND CONTROL SYSTEM CONSISTING OF:

- VAPOR EXTRACTION WELLS.
- 2. SEPARATOR, VAPOR/LIQUID.
- BLOWER, MAXIMUM FLOW RATE OF 250 SCFM.
- 4. TWO CARBON ADSORBERS, CANNISTER-TYPE, IN SERIES, EACH WITH AT LEAST 1000 POUNDS OF ACTIVATED CARBON.

Conditions:

- 1) OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
- 2) THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES.
- 3) IDENTIFICATION TAGS OR NAMEPLATES SHALL BE DISPLAYED ON THE EQUIPMENT TO SHOW MANUFACTURER MODEL NO. AND SERIAL NO. THE TAGS OR NAMEPLATES SHALL BE ISSUED BY THE MANUFACTURER AND SHALL BE AFFIXED TO THE EQUIPMENT IN A PERMANENT AND CONSPICUOUS LOCATION.
- 4) CURRENT CONTACT PERSON'S NAME, COMPANY AND PHONE NUMBER SHALL BE DISPLAYED IN A PERMANENT AND CONSPICUOUS LOCATION.

ORIGINAL

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 2 Permit No. R-F45563 A/N 390569

CONTINUATION OF PERMIT TO CONSTRUCT/OPERATE

- 5) FIVE DAYS AFTER THE EQUIPMENT IS PLACED INTO OPERATION AT A NEW SITE, THE AQMD SHALL BE NOTIFIED VIA PHONE AT 1-877-810-6995 OF THE FOLLOWING:
 - A. THE PERMIT NUMBER OF THE EQUIPMENT.
 - B. NAME AND PHONE NUMBER OF THE CONTACT PERSON.
 - C. THE LOCATION WHERE THE EQUIPMENT WILL BE OPERATED.
 - D. THE ESTIMATED TIME THE EQUIPMENT WILL BE OPERATED AT THE LOCATION.
 - E. DESCRIPTION OF THE PROJECT.
 - F. IF LESS THAN 1/4 MILE, THE DISTANCE TO THE NEAREST SENSITIVE RECEPTOR (LONG TERM HEALTH CARE FACILITY, REHABILITATION CENTERS, CONVALESCENT CENTERS, RETIREMENT HOMES, RESIDENCES, SCHOOLS GRADES K THRU 12, PLAYGROUNDS, CHILD CARE CENTERS AND ATHLETIC FACILITIES).
- 6) THIS EQUIPMENT SHALL NOT BE OPERATED AT THE SAME LOCATION MORE THAN TWELVE CONSECUTIVE MONTHS. ANY EQUIPMENT THAT REPLACES THE EQUIPMENT AT A SITE AND IS INTENDED TO PERFORM THE SAME FUNCTION AS THE EQUIPMENT BEING REPLACED SHALL BE INCLUDED IN CALCULATING THE TIME PERIOD.
- 7) UPON COMPLETION, ANY VAPOR EXTRACTION WELLS AND DUCTS SHALL BE CAPPED TO PREVENT VAPORS FROM VENTING TO THE ATMOSPHERE. VAPORS SHALL NOT BE EXTRACTED FROM THE SOIL UNLESS THEY ARE VENTED TO THE VAPOR CONTROL SYSTEM, WITH NO DETECTABLE LEAK BETWEEN THE OUTLET OF THE BLOWER AND THE OUTLET OF THE VAPOR CONTROL SYSTEM.
- 8) A FLOW INDICATOR SHALL BE INSTALLED AND MAINTAINED AT THE INLET TO THE VAPOR CONTROL SYSTEM TO INDICATE THE FLOW RATE IN STANDARD CUBIC FEET PER MINUTE (SCFM). IN CASE A PRESSURE SENSOR DEVICE IS USED IN PLACE OF THE FLOW INDICATOR, A CONVERSION CHART SHALL BE POSTED ON THE EQUIPMENT TO INDICATE THE FLOW RATE (IN CFM) CORRESPONDING TO THE PRESSURE READING.
- 9) THE TOTAL FLOW RATE AT THE INLET TO THE VAPOR CONTROL SYSTEM SHALL NOT EXCEED 250 SCFM.
- 10) THE TOTAL INLET CONCENTRATION SHALL NOT EXCEED 10,000 PPMV AS HEXANE.

<600

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 3 Permit No. R-F45563 A/N 390569

CONTINUATION OF PERMIT TO CONSTRUCT/OPERATE

THE VOLATILE ORGANIC COMPOUNDS (VOC) CONCENTRATIONS AT THE INLETS TO THE PRIMARY ADSORBER AND THE FINAL ADSORBER AND THE OUTLET FROM THE FINAL ADSORBER SHALL BE MEASURED ON THE FOLLOWING FREQUENCY:

DURING FIRST 48 HOURS OF OPERATION: TWO CONSECUTIVE INLET CONCENTRATIONS (PPMV) >5000 5000 - 2501 2500 - 1251 1250 - 601

TIME INTERVAL (HOURS) UNTIL

NEXT MEASUREMENT 2 HOURS

4 HOURS 8 HOURS 12 HOURS 24 HOURS

AFTER THE FIRST 48 HOURS OF OPERATION AND UNTIL THE END OF THE FIRST TWO WEEKS OF OPERATION, MEASUREMENTS SHALL BE TAKEN DAILY. AFTER THE FIRST TWO WEEKS OF OPERATION, MEASUREMENTS SHALL BE TAKEN ONCE PER WEEK.

CONCENTRATIONS SHALL BE MONITORED USING A PID WHEN TREATING CHLORINATED-CONTAMINATED SITES, A FID WHEN TREATING PETROLEUM HYDROCARBON-CONTAMINATED SITES OR AN AQMD APPROVED ORGANIC VAPOR ANALYZER (OVA) CALIBRATED IN PARTS PER MILLION BY VOLUME (PPMV) OF HEXANE (IF ANOTHER CALIBRATING AGENT IS USED IT SHALL BE CORRELATED TO AND EXPRESSED AS HEXANE).

- A SAMPLE OF THE VAPOR (INCLUDING DILUTION AIR) IN THE INLET TO THE PRIMARY ADSORBER AND THE OUTLET FROM THE FINAL ADSORBER SHALL BE COLLECTED FOR LABORATORY ANALYSIS USING APPROVED METHODS (IN CASES OF PROJECTS WHICH ARE COMPLETED WITHIN FIVE DAYS, CALORIMETRIC TUBES SHALL BE USED) IN THE FIRST 48 HOURS OF OPERATION AND THEN ONCE A MONTH THEREAFTER. SAMPLES SHALL BE COLLECTED CONCURRENTLY WITH VOC MONITORING. SAMPLES SHALL BE ANALYZED FOR TOTAL VOC (EXCEPT FOR PROJECTS COMPLETED WITHIN 5 DAYS) AND FOR EACH OF THE COMPOUNDS IDENTIFIED IN CONDITION 14 WITH THE EXCEPTION OF COMPOUNDS ANALYZED IN THE SITE ASSESSMENT AND FOUND TO BE NON-DETECTABLE.
- 13) THE VOC CONCENTRATION MEASURED AT THE OUTLET OF THE VAPOR CONTROL SYSTEM SHALL NOT EXCEED 10 PPMV AS HEXANE.
- 14) BASED ON THE DISTANCE FROM THE EQUIPMENT TO THE NEAREST SENSITIVE RECEPTOR, THE CONCENTRATION OF THE FOLLOWING 1401 TOXICS, IN PPMV, AT THE OUTLET OF THE FINAL ADSORBER SHALL NOT EXCEED THE FOLLOWING LIMITS:

METERS	BENZENE, FOR GASOLINE CONTAMINATED SITES	PCE OR TCE, FOR DRY CLEANING FLUID OR DEGREASER CONTAMINATED SITES
25<49	0.29	0.69
50<74	0.63	1.5
75<99	1.17	2.7
100<199	1.9	4.4
>=200	2.1	4.9

ORIGINAL

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 4 Permit No. R-F45563 A/N 390569

CONTINUATION OF PERMIT TO CONSTRUCT/OPERATE

15) THIS EQUIPMENT SHALL ONLY BE USED TO TREAT THE FOLLOWING COMPOUNDS:

BENZENE
TOLUENE
XYLENES
MTBE
MEK
ETHYLBENZENE
1-1 DICHLOROETHANE
1-2 DICHLOROETHENE
TRICHLOROETHENE
1-1-2 TRICHLOROETHANE
PERCHLOROETHYLENE
1-1-1 TRICHLOROFTHANE

- 16) WHENEVER THE OUTLET OF THE PRIMARY ADSORBER REACHES 10 PPMV, AS HEXANE, THE VAPOR CONTROL SYSTEM SHALL BE SHUT DOWN AND THE PRIMARY ADSORBER REPLACED WITH FRESH CARBON OR WITH THE SECONDARY VESSEL AND THE SECONDARY VESSEL REPLACED WITH FRESH CARBON (CARBON WITH CTC ACTIVITY NUMBER AT LEAST 60, ASTM D3467).
- 17) THE CARBON ADSORBERS SHALL BE CONNECTED IN SERIES, EACH CARBON ADSORBER SHALL CONTAIN AT LEAST 1000 POUNDS OF ACTIVATED CARBON.
- 18) THIS EQUIPMENT SHALL NOT BE INITIALLY OPERATED WITHIN 1000 FEET OF ANY SCHOOL AND SHALL NOT BE OPERATED WITHIN 25 METERS OF ANY SENSITIVE RECEPTOR (SEE CONDITION 5 FOR DEFINITION OF SENSITIVE RECEPTOR).
- 19) THE STACK HEIGHT SHALL BE A MINIMUM OF 14'-0" ABOVE GRADE.
- 20) RECORDS SHALL BE MAINTAINED AS REQUIRED BY THIS PERMIT FOR AT LEAST TWO YEARS AND BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST.

THIS PERMIT TO CONSTRUCT/OPERATE R-F45563 SUPERSEDES PERMIT TO CONSTRUCT/OPERATE F45563 ISSUED 10/24/2001.

NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR COPY SHALL BE POSTED ON OR WITHIN 8 METERS OF THE EQUIPMENT.

ORIGINAL

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copicy Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 5 Permit No. R-F45563 A/N 390569

CONTINUATION OF PERMIT TO CONSTRUCT/OPERATE

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT CANNOT BE CONSIDERED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF OTHER GOVERNMENT AGENCIES.

EXECUTIVE OFFICER

Deris on Bailey

By Dorris M. Bailey/tk01 10/31/01

ORIGINAL

ARCADIS BBLES

Appendix D

Laboratory Analytical Reports

October 30, 2006

Steven Fry Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Subject:

Calscience Work Order No.:

06-10-1351

Client Reference:

NGSC Former Y-12 Facility / 37134

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/24/2006 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Stephen Nowak

Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method:

Units:

10/24/06 06-10-1351

06-10-1351 N/A

> EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 1 of 6

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Inlet-102406-A			06-10-	1351-1	10/24/06	Air	N/A	10/24/06	061024	L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		Resu	ılt RL	<u>DF</u>	Qual
Acetone	38	2	1		t-1,2-Dichloroet	hene	ND	0.50	1	
Benzene	1.1	0.5	1		t-1,3-Dichloropi	ropene	ND	. 1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene	•	19	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		41	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3	-Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	43	- 1	1		Methyl-t-Butyl E	Ether (MTBE)	ND	2.0	1	
Carbon Disulfide	3.4	0.5	1		Methylene Chlo	oride `	12	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	tanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		23	2	5	
Chloroethane	ND	0.50	1		p/m-Xylene		88	1	1	
Chloroform	0.65	0.50	- 1		Styrene		ND	1.0	1	
Chloromethane	0.70	0.50	1		Tetrachloroethe	ene	110	2	5	
Dibromochloromethane	ND	0.50	1		Toluene		14	0.50	1	
Dichlorodifluoromethane	0.63	0.50	1		Trichloroethene)	330	10	20	
1,1-Dichloroethane	2.4	0.5		soon as as as	Trichlorofluoror	nethane	ND.	1.0	1	
1,1-Dichloroethene	370	10	20		1,1,2-Trichloro-	1,2,2-Trifluoroe	thane ND	1.0	1	
1,2-Dibromoethane	ND	0.50	1		1,1,1-Trichloroe	ethane	30	0.50	1	TELEVISION CONTRACTOR
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	ethane	0.	83 0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyl	benzene	20	2	5	
1.2-Dichloroethane	0.51	0.50	1		1.1.2.2-Tetrach	loroethane	ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyl	benzene	68	5	5	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorol		ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		·			2.20	•	
Surrogates:	REC (%)	Control	•	Qual	Surrogates:		REC (-	Qual
1,4-Bromofluorobenzene	108	<u>Limits</u> 57-129			1,2-Dichloroeth	ane-d4	127	<u>Limits</u> 47-137		
Toluene-d8	105	78-156								

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifier

Units:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: 10/24/06 06-10-1351 N/A

EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 2 of 6

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Inlet-102406-B			06-10-	1351-2	10/24/06	Air	N/A	10/25/06	061024	IL01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resi	ult RL	<u>DF</u>	Qual
Acetone	43	2	1		t-1,2-Dichloroet	hene	ND	0.50	1	
Benzene	0.53	0.50	1		t-1,3-Dichloropr	opene	ND	1.0	1.	
Benzyl Chloride	ND	1.0	1		Ethylbenzene	•	ND	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3	-Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	45	1	1		Methyl-t-Butyl E	ther (MTBE)	ND	2.0	1	
Carbon Disulfide	3.1	0.5	1		Methylene Chlo	ride	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	tanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		0.	88 0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene		1.	9 1.0	1	
Chloroform	0.78	0.50	1		Styrene		ND	1.0	1-	
Chloromethane	0.68	0.50	1		Tetrachloroethe	ene	170	10	20	
Dibromochloromethane	ND	0.50	1		Toluene		2.	8 0.5	1	
Dichlorodifluoromethane	0.60	0.50	1		Trichloroethene	•	600	10	20	
1,1-Dichloroethane	3.1	0.5	1		Trichlorofluoron	nethane	ND	1.0	1	on a grand of the control
1,1-Dichloroethene	510	10	20		1,1,2-Trichloro-	1,2,2-Trifluoroet	hane ND	1.0	1	
1,2-Dibromoethane	ND	0.50	1	tronger total suprants and	1,1,1-Trichloroe	ethane	37	0.50	1	en tres commentente de la commentación de la commentación de la companya de la companya de la companya de la c
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	ethane	1.	2 0.5	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyll	benzene	ND	0.50	1	
1,2-Dichloroethane	0.54	0.50	1		1,1,2,2-Tetrach	loroethane	ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyll	benzene	1.	8 1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorob	enzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	0.62	0.50	1		-					
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC	(%) <u>Control</u> Limits	L	Qual
1,4-Bromofluorobenzene	103	57-129			1,2-Dichloroeth	ane-d4	104	47-137		
Toluene-d8	102	78-156								

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: 10/24/06 06-10-1351 N/A

Method: Units: EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 3 of 6

Client Sample Number				ib Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Inlet-102406-B-D			06-10-	1351-3	10/24/06	Air	N/A	10/25/06	061024	1L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	37	2	1		t-1,2-Dichloroet	hene	ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichloropr	opene	ND	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3-	Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	36	1	1		Methyl-t-Butyl E	ther (MTBE)	ND	2.0	1	
Carbon Disulfide	3.1	0.5	1		Methylene Chlor	ride	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pent	tanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		ND	0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene		1.1	1.0	1	
Chloroform	0.73	0.50	1 -		Styrene		ND -	1.0	1	
Chloromethane	0.79	0.50	1		Tetrachloroethe	ne	140	13	25	
Dibromochloromethane	ND	0.50	1		Toluene		2.0	0.5	1	
Dichlorodifluoromethane	0.63	0.50	1		Trichloroethene		460	13	25	
1,1-Dichloroethane	2.8	0.5			Trichlorofluorom	nethane	ND -	1.0		garan menenganyan sah
1,1-Dichloroethene	410	13	25		1,1,2-Trichloro-	1,2,2-Trifluoroet	hane ND	1.0	1_	
1,2-Dibromoethane	ND	0.50	1		1,1,1-Trichloroe	thane	26	0.50	1	
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	thane	1.5	0.5	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethylk	penzene	ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		1,1,2,2-Tetrachl	loroethane	ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethylk	enzene	ND	1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorob	enzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	0.59	0.50	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		<u>REC (%</u>	<u>Control</u> Limits		<u>Qual</u>
1,4-Bromofluorobenzene Toluene-d8	103 140	57-129 78-156			1,2-Dichloroetha	ane-d4	110	47-137		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Date Received: Work Order No: Preparation:

10/24/06 06-10-1351

N/A **EPA TO-15**

Method: Units:

ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 4 of 6

Client Sample Number				o Sample Number	Date Collected	Matrix	Date Prepared		Date alyzed	QC Bat	ch ID
Inlet-102406-C			06-10-1	351-4	10/24/06	Air	N/A	10	0/25/06	061024	L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter		<u>R</u>	<u>esult</u>	<u>RL</u>	DF	Qual
Acetone	4000	500	250		t-1,2-Dichloroet	hene		24	4	8	
Benzene	6.9	4.0	8		t-1,3-Dichloropr	opene	N	D	8.0	8	
Benzyl Chloride	ND	8.0	8		Ethylbenzene			17	4	8	
Bromodichloromethane	. ND	4.0	8		4-Ethyltoluene			27	4	8	
Bromoform	ND	4.0	8		Hexachloro-1,3	-Butadiene	N	D	8.0	8	
Bromomethane	ND	4.0	8		2-Hexanone		N	D	8.0	8	
2-Butanone	360	8	8		Methyl-t-Butyl E	ther (MTBE)	N	D	16	8	•
Carbon Disulfide	4.1	4.0	8		Methylene Chlo	ride	N	D	80	8	
Carbon Tetrachloride	ND	4.0	8		4-Methyl-2-Pen	tanone	N	D	8.0	8	
Chlorobenzene	ND	4.0	8		o-Xylene			54	4	8	
Chloroethane	ND	4.0	8		p/m-Xylene			79	8	8	
Chloroform	35	4	- 8		Styrene		N	D -	8.0	8	
Chloromethane	ND	4.0	8		Tetrachloroethe	ene		4300	130	250	
Dibromochloromethane	ND	4.0	8		Toluene			15	4	8	
Dichlorodifluoromethane	ND	4.0	8		Trichloroethene)	23	3000	500	1000	
1,1-Dichloroethane	130	4	8		Trichlorofluoron	nethane	N	D	8.0	8	
1,1-Dichloroethene	25000	500	1000		1,1,2-Trichloro-	1,2,2-Trifluoro	ethane	37	8	8	
1,2-Dibromoethane	ND	4.0	8		1,1,1-Trichloroe	ethane		1900	130	250	
Dichlorotetrafluoroethane	ND	16	8		1,1,2-Trichloroe	ethane		34	4	8	
1,2-Dichlorobenzene	ND	4.0	8		1,3,5-Trimethyli	benzene		42	4	8	
1,2-Dichloroethane	21	4	8		1,1,2,2-Tetrach	loroethane	N	D	8.0	8	
1,2-Dichloropropane	ND	4.0	8		1,2,4-Trimethyli	benzene		140	8	8	
1,3-Dichlorobenzene	ND	4.0	8		1,2,4-Trichlorob	enzene	N	D	8.0	8	
1,4-Dichlorobenzene	ND	4.0	8		Vinyl Acetate		N	D	8.0	8	
c-1,3-Dichloropropene	ND	4.0	8		Vinyl Chloride		N	D	4.0	8	
c-1,2-Dichloroethene	28	4	8		-						
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		RE	C (%)	Control Limits	9	Qual
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroeth	ane-d4	9	7	47-137		
Toluene-d8	102	78-156									

RL - Reporting Limit ,

DF - Dilution Factor

Units:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: 10/24/06 06-10-1351

N/A EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 5 of 6

Client Sample Number		· .		ıb Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Method Blank			095-01	-021-4,278	N/A	Air	N/A	10/24/06	061024	L01
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>		Resul	t RL	DF	<u>Qual</u>
Acetone	ND	2.0	1		t-1,2-Dichloroet	thene	ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichloropi	ropene	ND	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3	-Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	2.0	1	
Carbon Disulfide	ND	0.50	1		Methylene Chlo	oride	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	tanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		ND	0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene		ND	1.0	1	
Chloroform	ND	0.50	1 -		Styrene		ND	-1.0	1 .	
Chloromethane	ND	0.50	1		Tetrachloroethe	ene	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		Toluene		ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Trichloroethene	•	ND	0.50	1	
1,1-Dichloroethane	ND	0.50	1.		Trichlorofluoror	nethane	ND -	1.0		and the same of the same
1,1-Dichloroethene	ND	0.50	1		1,1,2-Trichloro-	1,2,2-Trifluoroe	thane ND	1.0	1	
1,2-Dibromoethane	ND	0.50	1	regalizare i i rezervira i percione	1,1,1-Trichloroe	ethane	ND	0.50	1	व्यक्त संदर्भक्षात्रम् व्यक्त राज्य १, १५
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	ethane	ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyl	benzene	ND	0.50	1	•
1,2-Dichloroethane	ND	0.50	1		1,1,2,2-Tetrach	loroethane	ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyl	benzene	ND	1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorol	benzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1		-					
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (9			<u>Qual</u>
		<u>Limits</u>						<u>Limits</u>		
1,4-Bromofluorobenzene	92	57-129			1,2-Dichloroeth	ane-d4	124	47-137		
Toluene-d8	94	78-156								

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: 10/24/06 06-10-1351

Method: Units: N/A EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 6 of 6

Client Sample Number			_	b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			095-01-	021-4,281	N/A	Air	N/A	10/25/06	06102	5L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	2.0	1		t-1,2-Dichloroet	hene	ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichloropr	opene	ND	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3-	-Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	ND	1.0	1		Methyl-t-Butyl E	ther (MTBE)	ND	2.0	1	
Carbon Disulfide	ND	0.50	1		Methylene Chlo	ride	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	tanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		ND	0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene		ND	1.0	1	
Chloroform	ND	0.50	- 4		Styrene		ND	1.0	1	
Chloromethane	ND	0.50	1		Tetrachloroethe	ene	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		Toluene		ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Trichloroethene)	ND	0.50	1	
1,1-Dichloroethane	ND	0.50			Trichlorofluoron	nethane	ND ;	1.0	1	
1,1-Dichloroethene	ND	0.50	1		1,1,2-Trichloro-	1,2,2-Trifluoro	ethane ND	1.0	1	
1,2-Dibromoethane	ND	0.50	1	de reporter in the result of the re-	1,1,1-Trichloroe	ethane	ND	0.50	1	
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	ethane	ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyli	benzene	ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		1,1,2,2-Tetrach	loroethane	ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyl		ND	1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorob	enzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1							
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual	Surrogates:		<u>REC (%</u>			<u>Qual</u>
		<u>Limits</u>						<u>Limits</u>		
1,4-Bromofluorobenzene	99	57-129			1,2-Dichloroeth	ane-d4	103	47-137		
Toluene-d8	99	78-156								

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Project: NGSC Former Y-12 Facility / 37134

Date Received: Work Order No: Preparation: Method: 10/24/06 06-10-1351 EPA 5030B EPA 8260B

.

Units: ug/L Page 1 of 4

- NOSC FOILIE	. 12 7 001	,							. ∽9	- 1 01 4
Client Sample Number	****			ib Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
GW-102406			06-10-1351-5		10/24/06	Aqueous	10/27/06	10/27/06	06102	7L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Resu	l <u>t</u> RL	<u>DF</u>	Qual
Acetone	ND	100	2		1,3-Dichloropr	opane	ND	2.0	2	
Benzene	ND	1.0	2		2,2-Dichloropr	opane	ND	2.0	2	
Bromobenzene	ND	2.0	2		1,1-Dichloropr	opene	ND	2.0	2	
Bromochloromethane	ND	2.0	2		c-1,3-Dichloro	propene	ND	1.0	2	
3romodichloromethane	2.8	2.0	2		t-1,3-Dichlorop	ropene	ND	1.0	2	
3romoform	ND	2.0	2		Ethylbenzene		ND	2.0	2	
3romomethane	ND	20	2		2-Hexanone		ND	20	2	
2-Butanone	250	20	2		Isopropylbenze	ene	ND	2.0	2	
n-Butylbenzene	ND	2.0	2		p-Isopropyltolu	iene	ND	2.0	2	
sec-Butylbenzene	ND	2.0	2		Methylene Chl		ND	20	2	
ert-Butylbenzene	ND	2.0	2		4-Methyl-2-Per		ND	20	2	
Carbon Disulfide	ND ND	20	2		Naphthalene		- ND	- 20	- 2	
Carbon Tetrachloride	ND	1.0	2		n-Propylbenze	ne	ND	2.0	2	
Chlorobenzene	ND	2.0	2		Styrene		ND	2.0	2	
Chloroethane	ND	2.0	2		1.1.1.2-Tetrac	hloroethane	ND	2.0	2	
Chloroform	ND	2.0	2		1,1,2,2-Tetrac		ND .	2.0		
Chloromethane	ND	20	2		Tetrachloroeth		ND	2.0	2	
2-Chlorotoluene	ND	2.0	2		Toluene	Version American in the street and a street	ND	2.0	2	TO THE WOOD PROPERTY OF THE PARTY.
4-Chlorotoluene	ND	2.0	2		1,2,3-Trichlord	benzene	ND	2.0	2	
Dibromochloromethane	2.3	2.0	2		1,2,4-Trichlord		ND	2.0	2	
1,2-Dibromo-3-Chloropropane	ND	10	2		1,1,1-Trichlord		ND	2.0	2	
1,2-Dibromoethane	ND	2.0	2			-1,2,2-Trifluoroe		20	2	
Dibromomethane	ND	2.0	2		1,1,2-Trichlord		ND	2.0	. 2	
1,2-Dichlorobenzene	ND	2.0	2		Trichloroethen		ND	2.0	2	
1,3-Dichlorobenzene	ND	2.0	2		Trichlorofluoro		ND	20	2	
1,4-Dichlorobenzene	ND	2.0	2		1,2,3-Trichlord		ND	10	2	
Dichlorodifluoromethane	ND	2.0	2		1,2,4-Trimethy		ND	2.0	2	
1,1-Dichloroethane	ND	2.0	2		1,3,5-Trimethy		ND	2.0	2	
1,2-Dichloroethane	ND	1.0	2		Vinyl Acetate		ND	20	2	
1.1-Dichloroethene	ND	2.0	2		Vinyl Chloride		ND	1.0	2	
c-1,2-Dichloroethene	ND	2.0	2		p/m-Xylene		ND	2.0	2	
-1,2-Dichloroethene	ND	2.0	2		o-Xylene		ND	2.0	2	
1,2-Dichloropropane	ND	2.0	2		Methyl-t-Butyl	Ether (MTBE)	ND	2.0	2	
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (Qual
	1100 1707	Limits			<u>==::-sgu.co.</u>			Limits	-	<u>~~~~~</u>
Dibromofluoromethane	103	74-140			1,2-Dichloroet	hane-d4	104	74-146		
Foluene-d8	94	88-112			1,4-Bromofluo		91	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

10/24/06 06-10-1351 EPA 5030B

Method: Units: EPA 8260B ug/L

Project: NGSC Former Y-12 Facility / 37134

Page 2 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
TB-102406			06-10-1	1351-6	10/24/06	Aqueous	10/26/06	10/26/06	06102	6L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter		Resu	lt RL	DF	Qual
Acetone	ND	50	1		1,3-Dichloropre	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	•	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	1	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro		ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop		ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	97 5 797	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl		ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND ·	10	· 1 ·		Naphthalene		ND-	10		
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	hloroethane	ND	1.0	1	
- Chloroform	ND -	1.0	4 4		1,1,2,2-Tetracl	hloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen	е	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1.	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (%) Control	_	Qual
	•	<u>Limits</u>					_	<u>Limits</u>		
Dibromofluoromethane	10 4	74-140			1,2-Dichloroeth	nane-d4	109	74-146		
Toluene-d8	94	88-112			1,4-Bromofluo	robenzene	89	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FA

FAX: (714) 894-7501

Units:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received:
Work Order No:
Preparation:
Method:

06-10-1351 EPA 5030B EPA 8260B ug/L

10/24/06

Project: NGSC Former Y-12 Facility / 37134

Page 3 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			099-10	-006-19,43	6 N/A	Aqueous	10/26/06	10/26/06	061026	BL01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Result	RL	<u>DF</u>	Qual
Acetone	ND	50	1		1,3-Dichloropro	pane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	•	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	pene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop	ropene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichloropi	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ne	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolue	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pen	itanone	ND	10	1	
Carbon Disulfide	- ND	10	· ··1		Naphthalene		ND ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	loroethane	ND	1.0	1	
Chloroform	ND	1.0		12.2. 5.3.	1,1,2,2-Tetrach	loroethane	ND-	1.0		
Chloromethane	ND	10	1		Tetrachloroethe	ene	ND	1.0	1_	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlorol	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlorob	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloroe	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro-	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloroe	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	9	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoror	nethane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloron		ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl	benzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl	benzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%	(a) <u>Control</u> Limits	•	Qual
Dibromofluoromethane	103	74-140			1,2-Dichloroeth	ane-d4	104	74-146		
Toluene-d8	93	88-112			1,4-Bromofluor		89	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received:
Work Order No:
Preparation:
Method:

10/24/06 06-10-1351 EPA 5030B

Method: Units: EPA 8260B ug/L

Project: NGSC Former Y-12 Facility / 37134

Page 4 of 4

Client Sample Number				ıb Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			099-10	-006-19,44	18 N/A	Aqueous	10/27/06	10/27/06	06102	7L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Resi	ult RL	<u>DF</u>	Qual
Acetone	ND	50	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropro	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	ppene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	oropene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1 .		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chle	oride	ND	10	1	
tert-Butylbenzene	ND .	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	· · · · ND · · ·	10	- 1		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	nloroethane	ND	1.0	1	
- Chloroform	ND	- 1.0	1		1,1,2,2-Tetracl	nloroethane	ND.	1.0		
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND:	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		, ,	-1,2,2-Trifluoro		10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen	-	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	• •	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC	(<u>%)</u> Contro Limits		<u>Qual</u>
Dibromofluoromethane	101	74-140			1,2-Dichloroeth	nane-d4	107	74-146		
Toluene-d8	94	88-112			1,4-Bromofluor	robenzene	89	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: 10/24/06 06-10-1351 EPA 5030B EPA 8260B

Project NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepare		Date Analyzed	MS/MSD Batch Number
06-10-1393-1	Aqueou	s GC/MST	10/26/0	6	10/26/06	061026S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	98	97	88-118	1	0-7	
Carbon Tetrachloride	104	101	67-145	2	0-11	
Chlorobenzene	97	95	88-118	2	0-7	
1,2-Dichlorobenzene	99	99	86-116	0	0-8	
1,1-Dichloroethene	101	98	70-130	3	0-25	
Toluene	98	97	87-123	1	0-8	
Trichloroethene -	95	94	79-127	0.	0-10	
Vinyl Chloride	89	92	69-129	4	0-13	
Methyl-t-Butyl Ether (MTBE)	100	100	71-131	0	0-13	
Tert-Butyl Alcohol (TBA)	102	112	36-168	9	0-45	
Diisopropyl Ether (DIPE)	101	99	81-123	2	0-9	
Ethyl-t-Butyl Ether (ETBE)	99	99	72-126	0	0-12	general en amen er roman som maar van de verder en en de de de de
Tert-Amyl-Methyl Ether (TAME)	98	98	72-126	0	0-12	
Ethanol	97	103	53-149	6	0-31	

RPD - Relative Percent Difference,

CL - Control Limi

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Date Received: Work Order No: Preparation: Method: 10/24/06 06-10-1351 EPA 5030B EPA 8260B

Project NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d	Date Analyzed	MS/MSD Batch Number
06-10-1433-5	Aqueou	s GC/MST	10/27/06		10/27/06	061027S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	96	97	88-118	1	0-7	
Carbon Tetrachloride	106	104	67-145	1	0-11	
Chlorobenzene	98	97	88-118	1	0-7	
1,2-Dichlorobenzene	99	102	86-116	3	0-8	
1,1-Dichloroethene	100	99	70-130	1	0-25	
Toluene	97	98	87-123	1	0-8	
Trichloroethene	97	95	79-127	2	0-10	· · · ·
Vinyl Chloride	91	94	69-129	4	0-13	
Methyl-t-Butyl Ether (MTBE)	103	105	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	115	121	36-168	5	0-45	
Diisopropyl Ether (DIPE)	100	100	81-123	0	0-9	
Ethyl-t-Butyl Ether (ETBE)	101	104	72-126	3	0-12	entre grang transfer de la company de la
Tert-Amyl-Methyl Ether (TAME)	98	102	72-126	4	0-12	
Ethanol	104	111	53-149	6	0-31	

RPD - Relative Percent Difference,

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

06-10-1351 N/A

N/A

Method:

EPA TO-15

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD Bat Number	ch
095-01-021-4,278	Air	GC/MS K	N/A	10/24	/06	061024L01	
Parameter	LCS %F	REC LCSD 9	%REC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	108	96		60-156	12	0-40	
Carbon Tetrachloride	106	93		64-154	13	0-32	
1,2-Dibromoethane	106	98		54-144	7	0-36	
1,2-Dichlorobenzene	91	90		34-160	2	0-47	
1,2-Dichloroethane	124	105		69-153	17	0-30	
1,2-Dichloropropane	112	100		67-157	12	0-35	
1,4-Dichlorobenzene	95	92		36-156	3	0-47	
c-1,3-Dichloropropene	110	99		61-157	11	0-35	
Ethylbenzene	117	110		52-154	6	0-38	
o-Xylene	108	102		52-148	5	0-38	
p/m-Xylene	104	98-		42-156		0-41	
Tetrachloroethene	101	94		56-152	8	0-40	en de la compania de
Toluene	112	104		56-146	7	0-43	
Trichloroethene	107	95		63-159	12	0-34	
1,1,2-Trichloroethane	107	96		65-149	11	0-37	
Vinyl Chloride	118	114		45-177		0-36	

RPD - Relative Percent Difference,

CL - Control Limit

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No:

06-10-1351

Preparation:

N/A

N/A

Method:

EPA TO-15

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
095-01-021-4,281	Air	GC/MS K	N/A	10/2	5/06	061025L01	
Parameter	LCS %RE	C LCSD %	SREC 9	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	116		60-156	11	0-40	
Carbon Tetrachloride	101	114		64-154	12	0-32	
1,2-Dibromoethane	109	117		54-144	7	0-36	
1,2-Dichlorobenzene	96	117		34-160	19	0-47	
1,2-Dichloroethane	126	128		69-153	2	0-30	
1,2-Dichloropropane	106	116		67-157	10	0-35	
1,4-Dichlorobenzene	99	116		36-156	16	0-47	
c-1,3-Dichloropropene	105	116		61-157	10	0-35	
Ethylbenzene	121	135		52-154	11	0-38	
o-Xylene	115	130		52-148	13	0-38	
p/m-Xylene		126		42-156	12 -	0-41	a an area and a just
Tetrachloroethene		119		56-152	11	0-40	AATERIK TEKNUTSPOON ATERIKET T
Toluene	115	123		56-146	7	0-43	
Trichloroethene	103	118		63-159	14	0-34	
1,1,2-Trichloroethane	100	111		65-149	11	0-37	
Vinyl Chloride	116	119		45-177	2	0-36	

RPD - Relative Percent Difference,

CL - Control Limit

C alscience I nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method:

06-10-1351 EPA 5030B EPA 8260B

N/A

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Bate Number	ch
099-10-006-19,436	Aqueous	GC/MS T	10/26/06	10/26/0	06	061026L01	
Parameter	LCS %R	REC LCSD 9	<u>6REC</u> <u>%R</u>	EC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	95	95	8	4-120	0	0-8	
Carbon Tetrachloride	101	102		3-147	1	0-10	
Chlorobenzene	93	94	8	9-119	1	0-7	
1,2-Dichlorobenzene	95	96	8	9-119	0	0-9	
1,1-Dichloroethene	98	99	7	7-125	1	0-16	
Toluene	95	95	8	3-125	0	0-9	
Trichloroethene	92	94	8	9-119	1	8-0	
Vinyl Chloride	98	93	6	3-135	5	0-13	
Methyl-t-Butyl Ether (MTBE)	106	102	8	2-118	4	0-13	
Tert-Butyl Alcohol (TBA)	116	109	4	6-154	7	0-32	
Diisopropyl Ether (DIPE)	- 102			1-123	2	0-11	and the second second
Ethyl-t-Butyl Ether (ETBE)	103	101		4-122	2	0-12	- William Land Falls of Balls (1997)
Tert-Amyl-Methyl Ether (TAME)	101	99	7	6-124	2	0-10	
Ethanol	117	104	6	0-138	12	0-32	

laha

CL - Control Limi

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Date Received: Work Order No: Preparation:

Method:

06-10-1351 EPA 5030B EPA 8260B

N/A

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Bate Number	ch
099-10-006-19,448	Aqueous	GC/MS T	10/27/06	10/27	7/06	061027L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	98	97		84-120	0	0-8	
Carbon Tetrachloride	108	104		63-147	4	0-10	
Chlorobenzene	98	96		89-119	2	0-7	
1,2-Dichlorobenzene	99	100		89-119	1	0-9	
1,1-Dichloroethene	102	99		77-125	2	0-16	
Toluene	99	98		83-125	0	0-9	
Trichloroethene	96	96		89-119	0	8-0	
Vinyl Chloride	95	92		63-135	3	0-13	
Methyl-t-Butyl Ether (MTBE)	106	104		82-118	2	0-13	
Tert-Butyl Alcohol (TBA)	115	113		46-154	2	0-32	
Diisopropyl Ether (DIPE)		101		81-123	2 2	0-11	
Ethyl-t-Butyl Ether (ETBE)	104		Ambiron St. Amin	74-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	102	100		76-124	2	0-10	
Ethanol	99	101		60-138	2	0-32	

RPD - Relative Percent Difference,

CL - Control Limit

Muhan_

Glossary of Terms and Qualifiers

Work Order Number: 06-10-1351

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
A	Result is the average of all dilutions, as defined by the method.
B	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1427** TEL: (714) 895-5494 • FAX: (714) 894-7501

H	AIN	OF	CUSTODY	RECORD

Date	10.	24.0b		- ;	
Pana	1	of	1		

LABOF	ATORY CLIENT: BBL, I	ne.							PROJE									P.C). NO	.:				
ADDRI	ess: 2600 Moules o	Dr. 632 8	30				L S	Lev	CON	NATE	?) /	<u>/ ()</u>	852	3)3	5	<u> 15</u>	324	ĮΔ	8418	E.ON	LY	Ted wa	1	8883 ·
		CTATE		 		'IP													17	<u> </u>	ΠF	3] [5 1 [T
	For, ne	_	<u> </u>		926	12	SAI	MPLE	~~~ R(S): (PRIN			10	OELT	LOG	CODE		co	OLE	R RE	CEIPT	<u>г</u>		
TEL:	QUA) KEL A-SZ E-MAIL	wscial ppl-	(m/ c >-	~			a :		ام ر					٦٢	٦ſ	7		475×1	100 15	er er er er			i ili	°C
TURN	949) 474, 9352 1 ROUND TIME:	<u>.</u>	inci wi	_			1	<u>W</u>	12.	<u>~e\</u>		E		ST				1993	7 · · · · ·	4.4.5			<u>तर प्रत्यन्त</u>	. P. (138)
		48 HR 🔲 72 HR	☐ 5 DAY	's DA	10 DAYS		<u> </u>	r		+	-	E	UE	311	- <i>U</i>	AN	AL	- Y 2)E3	,		т т		_
	AL REQUIREMENTS (ADDITIONAL COS												Ì				ĺ							
	RWQCB REPORTING FORMS [ALINSTRUCTIONS:	COELT EDF					-									4								
), CO.	at mornou none.		•		Sections											12		2						l
							ŀ		8)	60B		یم				90	8	5	İ				1	
			•						8260	8	1	8			١	15(6	(827	or (€					.
	•								BTEX/MTBE (8260B) or	OXYGENATES (8260B)	8	5035 ENCORE PREP	SVOCs (8270C)	PEST (8081A)	2	CAC, T22 METALS (6010B) / 747	PNAs (8310) or (8270C)	VOCs (TO-14A) or (TO-15)	TPH(G) (TO-3M)					
LAB		FIELD POINT NAME	SAM	PLING		NO. OF	(g)	TPH (D) or	W/	EN S	VOCs (8260B)	욂	88	8	PCBs (8082)	122	8	8	0)(0	,				- 1
USE	SAMPLE ID	(FOR COELT EDF)	DATE	TIME	MATRIX	CONT.	TPH (G)	PH (Ë	ξ	ပ္လ	33	Š	S	8	ÄC,	N S	ő	F					
UNL		, , , , , , , , , , , , , , , , , , , ,	 		G	1	一	-		-		-	-	_		\dashv	-		Ë	 	\vdash		-	-
	Inled-102406-A		10.24.06				-				V					_				-	 	\vdash		
	Inled-102406-B			1325	6	1					ソ													
. • .	I.bd - 102406-B-1	5		1325	6	1				; [/	-				Ì	1							
	Inlex_102406-C		-	1530	G	ı					V													
'	GW-102404		###5	1415	W	3					V													
	TB-102466		**	CCFO		2					٨,				$\neg \uparrow$								7	\neg
	150,00,186		V	7 733	 	1	1				<u> </u>			\dashv	\dashv	\dashv	_		-	\vdash	╁─┤	\vdash	-	-
·			-			ļ <u>.</u>	_				\rightarrow				-	-	_				 			\dashv
			<u> </u>														1 4							
													, T	ļ										1
							1			:	\dashv			$\neg \uparrow$	\top	$\neg \dagger$								\dashv
Relin	quished by: (Signature)	<u> </u>		Recei	ived by: (Signatu	re)Affi	liation)							+	Date	e.		<u> </u>	Tim	oe.		
	Mi		_			المرجوسية	2		·/			Z	_					-	4.0	L	10	5:35	5	
Relin	quished by: (Signature)			Recei	ived by: (Signatu	re/Affi	liation)			_	<u> </u>	7	1		Date	e: /	/	<u>, ~~</u>	Tim	ne:		\dashv
		7				. •					_ (9/	4			(2) e:	44	, <u>2</u>	16	5/4		
Relin	quished by: (Signature)			Rece	ived by:	(Signatu	re/Aff	liation	1)				4	O			Date	e:	7		Tim	10:	- (
	<u> </u>																·		<u> </u>					
	DISTRIBUTION: White with fi	nal report, Green and Ye	llow to Clien	t.																	05	/10/06	Revi	sion

DISTRIBUTION: White with final report, Green and Yellow to Client.

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

OCVOCRWQCB004199

WORK ORDER #: **06** - 1 0 - 1 3

_		
Cooler	of	

SAMPLE REC	EIPT FORM
CLIENT: BBC	DATE: 10/24/6
TEMPERATURE - SAMPLES RECEIVED BY:	1
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank. ° C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not letter)	ntact) : Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

alscience nvironmental aboratories. Inc.

October 30, 2006

Steven Fry Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Subject:

Calscience Work Order No.:

06-10-1433

Client Reference:

NGSC Former Y-12 Facility / 37134

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/25/2006 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Stephen Nowak **Project Manager**

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: 10/25/06 06-10-1433

N/A EPA TO-15

Units:

ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 1 of 5

Client Sample Number				ib Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	itch ID
Inlet-102506-A			06-10-	1433-2	10/25/06	Air	N/A	10/26/06	061025	iL01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Res	ult RL	<u>DF</u>	Qual ·
Acetone	19	2	1		t-1,2-Dichloroet	hene		1.7 0.5	1	
Benzene	. 1.0	0.5	1		t-1,3-Dichloropi	ropene	ND	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3	-Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	26	1	1		Methyl-t-Butyl E	ther (MTBE)	ND	2.0	1	
Carbon Disulfide	3.0	0.5	1		Methylene Chlo	ride	1	6 10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	tanone	ND	1.0	. 1	
Chlorobenzene	ND	0.50	1		o-Xylene			0.53 0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene			1.1 1.0	1	
Chloroform	2.6	0.5	1 -		Styrene		ND	1.0	1	
Chloromethane	0.58	0.50	1		Tetrachloroethe	ene	130	100	200	
Dibromochloromethane	ND	0.50	1		Toluene	•		2.4 0.5	1	
Dichlorodifluoromethane	0.71	0.50	1		Trichloroethene	•	340	0 100	200	
1,1-Dichloroethane	9.3	0.5	1		Trichlorofluoron	nethane	ND	1.0		
1,1-Dichloroethene	1400	100	200		1,1,2-Trichloro-	1,2,2-Trifluoroe	thane	2.4 1.0	1	
1,2-Dibromoethane	ND	0.50	1		1,1,1-Trichloroe	ethane	15	0 10	20	
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	ethane		5.5 0.5	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyll	benzene	ND	0.50	1	
1,2-Dichloroethane	2.2	0.5	1		1,1,2,2-Tetrach	loroethane	ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyll	benzene		1.1 1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorok	oenzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	2.9	0.5	1							
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC		_	<u>Qual</u>
4.4. Daniel Granden	400	<u>Limits</u>			4.0.00			Limits		
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroeth	ane-04	90	47-137		
Toluene-d8	99	78-156								

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Units:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method:

06-10-1433 N/A EPA TO-15

ppb (v/v)

10/25/06

Project: NGSC Former Y-12 Facility / 37134

Page 2 of 5

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared		Date alyzed	QC Ba	tch ID
Inlet-102506-B			06-10-1	433-3	10/25/06	Air	N/A	10)/26/06	061025	L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Re	sult	RL	<u>DF</u>	<u>Qual</u>
Acetone	19	2	1		t-1,2-Dichloroet	hene		0.67	0.50	1	
Benzene	0.66	0.50	- 1		t-1,3-Dichloropr	opene	NE)	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		N)	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		NE)	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3-	-Butadiene	N)	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		N)	1.0	1	
2-Butanone	12	1	1		Methyl-t-Butyl E	ther (MTBE)	NE)	2.0	1	
Carbon Disulfide	3.4	0.5	1		Methylene Chlo	ride		13	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	tanone	NE)	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene			0.52	0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene			1.3	1.0	1	
Chloroform	1,1	0.5	1		Styrene		NE)	1.0		
Chloromethane	0.57	0.50	1		Tetrachloroethe	ne	5	90	20	40	
Dibromochloromethane	ND	0.50	1		Toluene			2.6	0.5	1	
Dichlorodifluoromethane	0.55	0.50	1		Trichloroethene	ı	17	00	20	40	
1,1-Dichloroethane	3.6	0.5	1		Trichlorofluoron	nethane	- NE)	1.0		nan aren barran
1,1-Dichloroethene	1400	20	40		1,1,2-Trichloro-	1,2,2-Trifluoroe	ethane	1.1	1.0	1	
1,2-Dibromoethane	ND	0.50	1		1,1,1-Trichloroe	thane	Andrew Control of the	40	0.50	1	
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	ethane		1.6	0.5	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyll	benzene	NE)	0.50	1	
1,2-Dichloroethane	0.65	0.50	1		1,1,2,2-Tetrach	loroethane	N)	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyll	benzene	NE)	1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorob	enzene	NE)	1.0	1	
1.4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		NE)	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		NE)	0.50	1	
c-1,2-Dichloroethene	0.99	0.50	1		•					,	
Surrogates:	REC (%)	Control	•	<u>Qual</u>	Surrogates:		REC	(%)	Control		Qual
1,4-Bromofluorobenzene	104	<u>Limits</u> 57-129			1,2-Dichloroetha	ane-d4	76		<u>Limits</u> 47-137		
Toluene-d8	97	78-156									

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Units:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: 10/25/06 06-10-1433 N/A

EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 3 of 5

Client Sample Number		*		b Sample Number	Date Collected	Matrix	Date Prepared		Date alyzed	QC Ba	ntch ID
Inlet-102506-C			06-10-1	433-4	10/25/06	Air	N/A	10	0/26/06	061026	5L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		R	esult	RL	DF	Qual
Acetone	15	2	1		t-1,2-Dichloroeth	nene		1.6	0.5	1	
Benzene	0.71	0.50	1		t-1,3-Dichloropro	opene	N	ID.	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		N	ID	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		N	ID.	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3-	Butadiene	N	ID	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		N	ID	1.0	1	
2-Butanone	7.7	1.0	1		Methyl-t-Butyl E		N	ID	2.0	1	
Carbon Disulfide	3.3	0.5	1		Methylene Chlor	ide		12	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pent	anone	N	ID	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		N	ID	0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene		N	ID	1.0	1	
Chloroform	0.81	0.50	- 1		Styrene			ID .	1.0	1	
Chloromethane	0.58	0.50	1		Tetrachloroether	пе		260	100	200	
Dibromochloromethane	ND	0.50	1		Toluene			1.8	0.5	1	
Dichlorodifluoromethane	0.53	0.50	1		Trichloroethene		1	700	100	200	
1,1-Dichloroethane	3.3	0.5	- 1		Trichlorofluorom	ethane		ID	1.0	- 1	anne sa esa e co
1,1-Dichloroethene	1300	100	200		1,1,2-Trichloro-1	in a francisco de la composición de la	ethane N	ID	1.0	1	
1,2-Dibromoethane	ND	0.50	1		1,1,1-Trichloroe	thane		29	0.50	1	
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe	thane		1.2	0.5	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethylb	enzene	N	ID	0.50	1	
1,2-Dichloroethane	ND	0.50	1		1,1,2,2-Tetrachle		N	ID	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethylb	enzene	N	ID	1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorob	enzene	N	ID	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		N	ID	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride			0.85	0.50	1	
c-1,2-Dichloroethene	1.3	0.5	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:		RE	C (%)	Control		Qual
1,4-Bromofluorobenzene	102	<u>Limits</u> 57-129			1.2-Dichloroetha	no da	7		<u>Limits</u> 47-137		
Toluene-d8	102	57-129 78-156			1,2-DIGHIOIOE[[18	u16-U4	′	7	47-13/		
i oluci ie-uo	100	10-100									

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: 10/25/06 06-10-1433 N/A

Method: Units: EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 4 of 5

Client Sample Number				ib Sample Number	Date Collected	Matrix	Date Prepared A	Date Analyzed	QC Ba	atch ID
Method Blank			095-01	-021-4,286	N/A	Air	N/A	10/25/06	06102	5L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	2.0	1		t-1,2-Dichloroet	thene	ND	0.50	1	
Benzene	ND	0.50	. 1		t-1,3-Dichloropi	ropene	ND	1.0	. 1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.50	1	
Bromoform	ND	0.50	. 1		Hexachloro-1,3	-Butadiene	ND	1.0	. 1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	ND	1.0	1		Methyl-t-Butyl E	` ,	ND	2.0	1	
Carbon Disulfide	ND	0.50	1		Methylene Chlo		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	itanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		ND	0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene		ND	1.0	1	
Chloroform	ND	0.50	1		Styrene		ND	1.0	1	
Chloromethane	ND	0.50	1		Tetrachloroethe	ene	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		Toluene		ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Trichloroethene		ND	0.50	1	
1,1-Dichloroethane	ND .	0.50			Trichlorofluoror		ND	1.0	1	2 - Land 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2
1,1-Dichloroethene	ND	0.50	1		rame" of the second regions of the con-	-1,2,2-Trifluoroet	market and an experience of the contract of th	1.0	1	- mari magan wagan yangan dari sanan kanasa kan
1,2-Dibromoethane	ND	0.50	1		1,1,1-Trichloroe		ND	0.50	1	
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyl		ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		1,1,2,2-Tetrach		ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyl		ND	1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorol	benzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%) <u>Control</u> <u>Limits</u>		Qual
1,4-Bromofluorobenzene	98	57-129			1,2-Dichloroeth	ane-d4	76	47-137		
Toluene-d8	95	78-156								

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830

Date Received: Work Order No: Preparation:

10/25/06

Irvine, CA 92612-6520

06-10-1433 N/A

Method: Units: EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 5 of 5

Client Sample Number				ib Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			095-01	-021-4,291	N/A	Air	N/A	10/26/06	06102	6L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	2.0	. 1		t-1,2-Dichloroet	hene	ND	0.50	. 1	
Benzene	ND	0.50	1		t-1,3-Dichloropr	ropene	ND	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		ND	0.50	1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.50	1	
Bromoform	ND	0.50	1		Hexachloro-1,3	-Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		ND	1.0	1	
2-Butanone	ND	1.0	1		Methyl-t-Butyl E		ND	2.0	1	
Carbon Disulfide	ND	0.50	1		Methylene Chlo	ride	ND	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pen	tanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		ND	0.50	1	
Chloroethane	ND	0.50	1		p/m-Xylene		ND	1.0	1	
Chloroform	ND	0.50	1		Styrene		ND	1.0	1	
Chloromethane	ND	0.50	. 1		Tetrachloroethe	ene	ND	0.50	1	
Dibromochloromethane	ND	0.50	1		Toluene		ND	0.50	1	
Dichlorodifluoromethane	ND	0.50	1		Trichloroethene		ND	0.50	1	
1,1-Dichloroethane	ND:	0.50	1		Trichlorofluoron	nethane	ND	1.0	- 1	
1,1-Dichloroethene	ND_	0.50	1_		1,1,2-Trichloro-	1,2,2-Trifluoroe	thane ND	1.0	1_	
1,2-Dibromoethane	ND	0.50	1		1,1,1-Trichloroe		ND	0.50	1	
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe		ND	0.50	1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethyll		ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		1,1,2,2-Tetrach	loroethane	ND	1.0	1	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethyl		ND	1.0	1	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorob	oenzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	0.50	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%	6) <u>Control</u> Limits		Qual
1,4-Bromofluorobenzene	102	57-129			1,2-Dichloroeth	ane-d4	102	47-137		
Toluene-d8	94	78-156			•					

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Units:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method:

06-10-1433 EPA 5030B EPA 8260B ug/L

10/25/06

Project: NGSC Former Y-12 Facility / 37134

Page 1 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
TB-102506			06-10-	1433-1	10/25/06	Aqueous	10/26/06	10/27/06	061020	SL02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resu	<u>t RL</u>	DF	Qual
Acetone	ND	50	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	opane	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
3romodichloromethane	ND.	1.0	1		t-1,3-Dichloron	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu		ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chi		ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	10	. 1		Naphthalene		ND ND	10	- 4	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1.1.1.2-Tetrachloroethane		ND	1.0	1	
Chloroform	ND	1.0			1,1,2,2-Tetrachloroethane		ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene	Tables and the selection of selection of the selection of	ND	1.0	1	ti armi nasagar ar aragan pangant.
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichlord	-1,2,2-Trifluoroeth	nane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichtorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	/lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits	-	Qual	Surrogates:	` ,	REC (%) <u>Control</u> Limits	•	Qual
Dibromofluoromethane	107	74-140			1,2-Dichloroet	hane-d4	115	74-146		
Foluene-d8	95	88-112			1,4-Bromofluo		88	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FA

FAX: (714) 894-7501

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: 10/25/06 06-10-1433 EPA 5030B

Method: Units: EPA 8260B ug/L

Project: NGSC Former Y-12 Facility / 37134

Page 2 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	itch ID
GW-102506			06-10-1	1433-5	10/25/06	Aqueous	10/27/06	10/27/06	061027	'L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Resul	RL	DF	Qual
Acetone	ND	50	1		1,3-Dichloropro	opane	ND	1.0	1	
Benzene	. ND	0.50	1		2,2-Dichloropro	pane	. ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropro	pene	ND	1.0	1	
Bromochloromethane	ND.	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chlo	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND ND	- 10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetracl	nloroethane	ND	1.0	1	
Chloroform	ND	1.0			-1,1,2,2-Tetracl	nloroethane	ND	1.0	1	
Chloromethane	ND	10	1		Tetrachloroeth	ene	1.1	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene	The second secon	ND	1.0	1	and the second of the second of the second of
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichloro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichloro	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichloro	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	е	6.6	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		NĐ	10	1	
1,1-Dichloroethene	1.4	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		REC (9	6) <u>Control</u> <u>Limits</u>	-	Qual
Dibromofluoromethane	103	74-140			1,2-Dichloroeth	nane-d4	106	74-146		
Toluene-d8	94	88-112			1,4-Bromofluor	robenzene	87	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • F

FAX: (714) 894-7501

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: Units: 10/25/06 06-10-1433 EPA 5030B EPA 8260B ug/L

Project: NGSC Former Y-12 Facility / 37134

Page 3 of 4

Client Sample Number				Sample umber	Date Collected	Matrix _F	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			099-10-0	06-19,44	4 N/A	Aqueous	10/26/06	10/27/06	061020	6L02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		Resul	<u>RL</u>	DF	Qual
Acetone	ND	50	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	propene	ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene	· · · · · · · · · · · · · · · · · · ·	ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	. 1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
ert-Butylbenzene	ND	1.0	1		4-Methyl-2-Per	ntanone	ND	10	1	
Carbon Disulfide	ND	10	1		Naphthalene		ND	10	-1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac	hloroethane	ND	. 1.0		and the second
Chloromethane	ND	10	1		Tetrachloroeth	ene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1	-100-178-078	Toluene		ND	1.0	1	remainigue in greather, that en
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichlord	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	ethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichlord	-1,2,2-Trifluoroeth	ane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord	ethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen	е	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	/ibenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	. 1	
Surrogates:	REC (%)	Control	-	Qual	Surrogates:	,	REC (9	6) Control	L ,	<u>Qual</u>
	454	<u>Limits</u>			4.0 Disking 1	h	400	Limits		
Dibromofluoromethane	104	74-140			1,2-Dichloroet		109	74-146		
Toluene-d8	94	88-112			1,4-Bromofluo	robenzene	88	74-110		

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifier

Mulum_

Units:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method:

06-10-1433 EPA 5030B EPA 8260B ug/L

10/25/06

Project: NGSC Former Y-12 Facility / 37134

Page 4 of 4

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			099-10	0-006-19,4	18 N/A	Aqueous	10/27/06	10/27/06	06102	7L01
Parameter	Result	RL	DF	Qual	Parameter		Resu	t <u>RL</u>	DF	Qual
Acetone	ND	50	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene	ND	0.50	1		2,2-Dichloropr	•	ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr		ND	1.0	1	
Bromochloromethane	ND	1.0	1		c-1,3-Dichloro	•	ND	0.50	1	
Bromodichloromethane	ND	1.0	1		t-1,3-Dichloro		ND	0.50	1	
Bromoform	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone	ND	10	1		Isopropylbenz	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-isopropyltolu	ene	ND	1.0	1	
sec-Butylbenzene	ND	1.0	1		Methylene Chl	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	··· ND	10	- 1		Naphthalene		ND	10	- 1 -	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ene	ND	1.0	1	
Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	•
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
- Chloroform	ND	1.0	1		1,1,2,2-Tetrac	hloroethane	ND ND	1.0	1 -	
Chloromethane	ND	10	1		Tetrachloroeth	iene	ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		Toluene	2. A DE Some Some State of the State of the	ND	1.0	1	engelen in lengthamaticschen zur zuwa
4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlord	benzene	ND	1.0	1	
Dibromochloromethane	ND	1.0	1		1,2,4-Trichtoro	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord	oethane	ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		1,1,2-Trichlord	o-1,2,2-Trifluoroe	thane ND	10	1	
Dibromomethane	ND	1.0	1		1,1,2-Trichlord	oethane	ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1		Trichloroethen	e	ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	propane	ND	5.0	1	
Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethy	/lbenzene	ND	1.0	1	
1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy	/lbenzene	ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		Vinyl Acetate		ND	10	1	
1,1-Dichloroethene	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		REC (%) <u>Control</u> <u>Limits</u>		Qual
Dibromofluoromethane	101	74-140			1,2-Dichloroet	hane-d4	107	74-146		
Toluene-d8	94	88-112			1,4-Bromofluo	robenzene	89	74-110		

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Method:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Date Received: Work Order No: Preparation:

10/25/06 06-10-1433 EPA 5030B EPA 8260B

Project NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared	l	Date Analyzed	MS/MSD Batch Number
06-10-1487-4	Aqueous	GC/MS T	10/26/06		10/27/06	061026802
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CI	Qualifiers
Benzene	98	97	88-118	2	0-7	
Carbon Tetrachloride	106	107	67-145	1	0-11	
Chlorobenzene	97	96	88-118	1	0-7	
1,2-Dichlorobenzene	100	99	86-116	1	0-8	
1,1-Dichloroethene	98	100	70-130	1	0-25	
Toluene	98	96	87-123	1	0-8	
Trichloroethene	96	96	79-127	0	0-10	
Vinyl Chloride	89	95	69-129	6	0-13	
Methyl-t-Butyl Ether (MTBE)	101	102	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	108	110	36-168	2	0-45	
Diisopropyl Ether (DIPE)	98	101	81-123	3	0-9	
Ethyl-t-Butyl Ether (ETBE)	98	101	72-126	3	0-12	ירושיין אין היינולי אין אין אין אין אין אין אין אין אין אי
Tert-Amyl-Methyl Ether (TAME)	97	97	72-126	0	0-12	
Ethanol	106	104	53-149	2	0-31	

RPD - Relative Percent Difference,

CL - Control Limit

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: 10/25/06 06-10-1433 EPA 5030B EPA 8260B

Project NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
GW-102506	Aqueous	GC/MS T	10/27/06		10/27/06	061027S01
December	MONDEO	MOD WEEG	W D = 0 0 1	DDD		0
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CI	<u>Qualifiers</u>
Benzene	96	97	88-118	1	0-7	
Carbon Tetrachloride	106	104	67-145	1	0-11	
Chlorobenzene	98	97	88-118	1	0-7	
1,2-Dichlorobenzene	99	102	86-116	3	0-8	
1,1-Dichloroethene	100	99	70-130	1	0-25	
Toluene	97	98	87-123	1	0-8	
Trichloroethene	97	95	79-127	2	- 0-10	
Vinyl Chloride	91	94	69-129	4.	0-13	
Methyl-t-Butyl Ether (MTBE)	103	105	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	115	121	36-168	5	0-45	
Diisopropyl Ether (DIPE)	100	100	81-123	0	0-9	
Ethyl-t-Butyl Ether (ETBE)	101	104	72-126	3	0-12	ektern verkomminister ihr min ett til med for i skinge ef den hamman.
Tert-Amyl-Methyl Ether (TAME)	98	102	72-126	4	0-12	
Ethanol	104	111	53-149	6	0-31	

l I. ..

RPD - Relative Percent Difference,

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No:

N/A 06-10-1433

Preparation: Method:

N/A EPA TO-15

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrumen	Date t Prepa		Date alyzed	LCS/LCSD Bat Number	ch
095-01-021-4,286	Air	GC/MS DE) N/A	10/	25/06	061025L01	
<u>Parameter</u>	LCS %	6REC LC	SD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	113	1	111	60-156	1	0-40	
Carbon Tetrachloride	111		110	64-154	0	0-32	
1,2-Dibromoethane	99		97	54-144	1	0-36	
1,2-Dichlorobenzene	102	!	101	34-160	1	0-47	
1,2-Dichloroethane	78		103	69-153	28	0-30	
1,2-Dichloropropane	101		102	67-157	1	0-35	
1,4-Dichlorobenzene	97		95	36-156	2	0-47	
c-1,3-Dichloropropene	110)	109	61-157	1 -	0-35	
Ethylbenzene	112	!	113	52-154	0	0-38	
o-Xylene	109	•	109	52-148	.0	0-38	
p/m-Xylene			-100	42-156	1	0-41	
Tetrachloroethene	104		103	56-152	1	0-40	ra velanan neeringaan oo oo oo oo oo
Toluene	105	i	105	56-146	0	0-43	
Trichloroethene	118	}	119	63-159	0	0-34	
1,1,2-Trichloroethane	99		99	65-149	0	0-37	
Vinyl Chloride	84		111	45-177	29	0-36	

RPD - Relative Percent Difference,

CL - Control Limit

C alscience E nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

N/A 06-10-1433 N/A

Method:

EPA TO-15

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
095-01-021-4,291	Air	GC/MS DD	N/A	10/26/06		061026L01	
Parameter	LCS %RE	C LCSD 9	6REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	109	111		60-156	2	0-40	
Carbon Tetrachloride	108	111		64-154	3	0-32	
1,2-Dibromoethane	98	99		54-144	1	0-36	
1,2-Dichlorobenzene	100	101		34-160	1	0-47	
1,2-Dichloroethane	85	104		69-153	20	0-30	
1,2-Dichtoropropane	100	101		67-157	0	0-35	
1,4-Dichlorobenzene	96	95		36-156	1	0-47	
c-1,3-Dichloropropene	107	109		61-157	2	0-35	
Ethylbenzene	112	113		52-154	1	0-38	
o-Xylene	109	111		52-148	2	0-38	
p/m-Xylene		102		42-156		0-41	
Tetrachloroethene	,106	105		56-152		0-40	nam amerikaturan mengebara sebe
Toluene	104	106		56-146	1	0-43	
Trichloroethene	118	119		63-159	0	0-34	
1,1,2-Trichloroethane	99	98		65-149	0	0-37	
Vinyl Chloride	83	113		45-177	30	0-36	

RPD - Relative Percent Difference,

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation: Method: N/A 06-10-1433 EPA 5030B EPA 8260B

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bat Number	ch
099-10-006-19,444	Aqueous	GC/MS T	10/26/06	10/26	6/06	061026L02	
<u>Parameter</u>	LCS %RE	C LCSD	<u>%REC</u> %	REC CL	RPD	RPD CL	Qualifiers
Benzene	99	98		84-120	1	0-8	
Carbon Tetrachloride	105	103	ı	63-147	2	0-10	
Chlorobenzene	98	95		89-119	3	0-7	
1,2-Dichlorobenzene	102	100		89-119	2	0-9	
1,1-Dichloroethene	100	100		77-125	1	0-16	
Toluene	98	98		83-125	1	0-9	
Trichloroethene	98	96		89-119	1	0-8	
Vinyl Chloride	92	95		63-135	3	0-13	
Methyl-t-Butyl Ether (MTBE)	103	105		82-118	1	0-13	
Tert-Butyl Alcohol (TBA)	104	108		46-154	4	0-32	
Diisopropyl Ether (DIPE)			er en	81-123	2 2		
Ethyl-t-Butyl Ether (ETBE)	101	103		74-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	101	102		76-124	1	0-10	
Ethanol	103	107		60-138	4	0-32	

RPD - Relative Percent Difference ,

CL - Control Limi

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Date Received: Work Order No: Preparation:

Method:

06-10-1433 EPA 5030B

N/A

EPA 8260B

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared	_	ate alyzed	LCS/LCSD Bat Number	ch
099-10-006-19,448	Aqueous	GC/MS T	10/27/06	10/2	7/06	061027L01	
Parameter	LCS %RE	C LCSD 9	AREC 9	%REC CL	RPD	RPD CL	Qualifiers
Benzene	98	<u>2002 /</u> 97	<u> </u>	84-120	0	0-8	<u> </u>
Carbon Tetrachloride	108	104		63-147	4	0-10	
Chlorobenzene	98	96		89-119	2	0-7	
1,2-Dichlorobenzene	99	100		89-119	1	. 0-9	
1,1-Dichloroethene	102	99		77-125	2	0-16	
Toluene	99	98		83-125	0 .	0-9	
Trichloroethene	96	96		89-119	0	0-8	
Vinyl Chloride	95	92		63-135	3	0-13	
Methyl-t-Butyl Ether (MTBE)	106	104		82-118	2	0-13	
Tert-Butyl Alcohol (TBA)	115	113		46-154	2	0-32	
Diisopropyl Ether (DIPE)		101		81-123		0-11	and the second second
Ethyl-t-Butyl Ether (ETBE)	104	103		74-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	102	100		76-124	2	0-10	
Ethanol	99	101		60-138	2	0-32	

Whan_

RPD - Relative Percent Difference , CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 06-10-1433

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

ALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY
GARDEN GROVE, CA 92841-1427
TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN	OF	CUS	TOD	Y R	ECO	RD
	VI.	~~~				

Date	10.25.06	
Page	\ of	1

LABORATO	PRY CLIENT:	Bonck & Lac	~	(BE	et 🔿 📒				PROJE									P.O). NO.	:				
ADDRESS	~ 1			(D)	<u>'\</u>		Ne	<u>sc</u>	For	Mu	<u> Y</u>	12	Fac	-114	L	<u> 371</u>	34					<u> </u>	!	
ADDITEOU.	2600 Michiba	n Dr. Ste	830				PRO	NEC	T COM	ITAC	T:	_		~)					ONL				
CITY —	E-MAIL	STATE			926)	IP.		53	مدرر	n	<u>+</u>	\sim										41		5
TEL:	E-MAIL	<u>~~~~</u>	<u> </u>		<u>422)</u>	4	SAI	/PLE	R(S): (PRIN	r)		0	OELI	LOG	COD	E	CO	OLEF	REC	EIPT			
ं (१५	47 474-9052 THE	mzein (a) bbl.	-Inc a	·m	1		'	Ma	hr	7					_][TEN	JP =	تبئين			157	°C
TURNARO	UND TIME:			•					44.			FO		ST	ED	ΔΝ	JAI	ve	ES	<u></u>				
SAM		48 HR 🔲 72 HR	☐ 5 DAY	rs 🛛	10 DAYS	i	<u> </u>			-								-13		, 				
	REQUIREMENTS (ADDITIONAL COS	•											.						.					
	OCB REPORTING FORMS	COELT EDF											ı				ĺ							
SPECIAL II	NSTRUCTIONS:				1			į				İ				174	l				i 1	.	i	
	•	•	*						5	<u>@</u>						8	6	5						
İ								-	99	3260		요]			8	202	틷	i l					
	•	•							(82	3) (5		ᇳ	0			ALS	8	\$	8					
							ŀ	٦	置	IATE	8	쮰	8	₩ ₩	ଷ୍ଟ	W	è	4	ဥ		1		1	
LAB		FIELD POINT NAME	SAM	PLING		NO. OF	1 ତ	0	W/	GEN	88	副	3	8	8	122	8	Ë	гРН(G) (TO-3M)					
USE	SAMPLE ID	(FOR COELT EDF)	DATE	TIME	MATRIX		TPH (G)	TPH (D) or	BTEX/MTBE (8260B) or	OXYGENATES (8260B)	VOCs (8260B)	5035 ENCORE PREP	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	CAC, T22 METALS (6010B) / 747	PNAs (8310) or (8270C)	VOCs (TO-14A) or (TO-15)	臣				1	
		, , , , , , , , , , , , , , , , , , , ,	 		+		-	_					-		-	\dashv	-	-		 	 		\dashv	
17	B-10256b		10.2504	0700	W	오					V									\sqcup			\dashv	
2 1	-12-102506-A		1	0845	G	1					V			_										
	14-1025 ob B			1230	G	1					V													
				1530	G					:	V													_
	10250b-C			 	+ 9-	3					-	-			-					$\vdash \vdash \vdash$		_	\dashv	<u> </u>
3	SW_1025%		V	1530	-W	15	<u> </u>			- -	V									\sqcup	 			
-				}		1				.									. !					
			 			 	1-	_		Ĺ											 			
				<u> </u>																				
				+													İ							
																							1	-
Relingui	shed by: (Signature)		<u> </u>	Rece	ived by: ((Signatu	re/Affi	iation	1)						الــــــــــــــــــــــــــــــــــــ		Date	e:			Tign	e:		
	Mahr	7 -			- <u>-</u>	> $/$					$\supset_{\mathcal{Z}}$			_			10.	25	. 0	(1/2	ie: 4	0	
Relinqui	shed by: (Signature)			Rece	ived by:	Signatu	re/Affi	iatior	1)	`					-		Dat		7	, -	Tim			_
	5-1-					HA		•	•	-	0	X		_			10	23	7/	クー	16	5/3	,	
Relinqui	shed by: (Signature)	7		Rece	eived by:			_	1)						******		Day		1		Tim	e:		
	- · ·								-												i i		1	
1					1																			

DISTRIBUTION: White with final report, Green and Yellow to Client.

OCVOCRWQCB004218

05/10/06 Revision

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

WORK ORDER #: 06 - 1 0 - 1 4 3 3

Cooler ____ of ___

SAMPLE RECEIPT FORM

SAMPLE REC	CEIPT FORIVI
CLIENT: BBL	DATE: 10/25/6
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. Comperature blank.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
Sample(s): No (Not	Intact) : Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples Sampler's name indicated on COC	
COMMENTS:	

October 31, 2006

Steven Fry Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Subject:

Calscience Work Order No.:

Client Reference:

06-10-1520

NGSC Former Y-12 Facility / 37134

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/26/2006 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Stephen Nowak

Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received:
Work Order No:
Preparation:
Method:
Units:

10/26/06 06-10-1520 N/A

EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 1 of 4

Client Sample Number				Sample lumber	Date Collected	Matrix	Date Prepared		Date alyzed	QC Bat	ch ID
Inlet-102606-A			06-10-1	520-1	10/26/06	Air	N/A	10	0/26/06	0610261	-01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		<u>R</u>	esult	RL	<u>DF</u>	Qual
Acetone	ND	3300	1650		t-1,2-Dichloroet	hene	N	ID.	830	1650	
Benzene	ND	830	1650		t-1,3-Dichloropr	ropene	N	ID	1700	1650	
Benzyl Chloride	ND	1700	1650		Ethylbenzene		N	ID	830	1650	
Bromodichloromethane	ND	830	1650		4-Ethyltoluene		N	ID	830	1650	
Bromoform	ND	830	1650		Hexachloro-1,3-	-Butadiene	N	ID	1700	1650	
Bromomethane	ND	830	1650		2-Hexanone		· · · · · · · · · · · · · · · · · · ·	ID	1700	1650	
2-Butanone	ND	1700	1650		Methyl-t-Butyl E	ther (MTBE)	N	ID	3300	1650	
Carbon Disulfide	ND	830	1650		Methylene Chlo	ride		62000	17000	1650	
Carbon Tetrachloride	ND	830	1650		4-Methyl-2-Pen	tanone	١	ID	1700	1650	
Chlorobenzene	ND	830	1650		o-Xylene		N	1D	830	1650	
Chloroethane	ND	830	1650		p/m-Xylene		N	ID	1700	1650	
Chloroform	ND -	830	1650		Styrene			ID :	1700	1650	
Chloromethane	ND	830	1650		Tetrachloroethe	ene	1	40000	33000	66000	
Dibromochloromethane	ND	830	1650		Toluene			3000	830	1650	
Dichlorodifluoromethane	ND	830	1650		Trichloroethene	;	5	50000	33000	66000	
1,1-Dichloroethane	1600	830	1650		Trichlorofluoron	nethane	N	ID.	1700	1650	
1,1-Dichloroethene	540000	33000	66000		1,1,2-Trichloro-	1,2,2-Trifluoroe	thane N	ID	1700	1650	
1,2-Dibromoethane	ND	830	1650	Market, and of one in	1,1,1-Trichloroe	ethane		19000	830	1650	r , engaletin magnetaletin menaletin, e
Dichlorotetrafluoroethane	ND	3300	1650		1,1,2-Trichloroe	ethane	١	1D	830	1650	
1,2-Dichlorobenzene	ND	830	1650		1,3,5-Trimethyll	benzene	١	ID	830	1650	
1,2-Dichloroethane	ND	830	1650		1,1,2,2-Tetrach	loroethane	١	I D	1700	1650	
1,2-Dichloropropane	ND	830	1650		1,2,4-Trimethyll	benzene	Ŋ	1D	1700	1650	
1,3-Dichlorobenzene	ND	830	1650		1,2,4-Trichlorob	enzene	1	1D	1700	1650	
1,4-Dichlorobenzene	ND	830	1650		Vinyl Acetate		١	1D	1700	1650	
c-1,3-Dichloropropene	ND	830	1650		Vinyl Chloride		1	ID .	830	1650	
c-1,2-Dichloroethene	ND	830	1650								
Surrogates:	REC (%)	Control		Qual	Surrogates:		RE	C (%)	Control		Qual
-		Limits							<u>Limits</u>		
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroeth	ane-d4	1	05	47-137		
Toluene-d8	97	78-156									

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

06-10-1520 N/A

10/26/06

Method: Units: EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 2 of 4

Client Sample Number				Sample lumber	Date Collected	Matrix	Date Prepared		Date alyzed	QC Bat	ch ID
Inlet-102606-B			06-10-1	520-2	10/26/06	Air	N/A	10	0/26/06	061026	L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Res	sult	RL	DF	Qual
Acetone	3700	3600	1800		t-1,2-Dichloroet	hene	NC)	900	1800	
Benzene	ND	900	1800		t-1,3-Dichloropr	opene	ND)	1800	1800	
Benzyl Chloride	ND	1800	1800		Ethylbenzene		NE)	900	1800	
Bromodichloromethane	ND	900	1800		4-Ethyltoluene		ND		900	1800	
Bromoform	ND	900	1800		Hexachloro-1,3-	-Butadiene	ND)	1800	1800	
Bromomethane	ND	900	1800		2-Hexanone		NE		1800	1800	
2-Butanone	ND	1800	1800		Methyl-t-Butyl E	ther (MTBE)	NE		3600	1800	
Carbon Disulfide	ND	900	1800		Methylene Chlo	ride	8:	3000	18000	1800	
Carbon Tetrachloride	ND	900	1800		4-Methyl-2-Pent	tanone	ND		1800	1800	
Chlorobenzene	ND	900	1800		o-Xylene		NE		900	1800	
Chloroethane	ND	900	1800		p/m-Xylene		ND)	1800	1800	
Chloroform	ND	900	1800		Styrene			2100	1800	1800	
Chloromethane	ND	900	1800		Tetrachloroethe	ene		0000	36000	72000	
Dibromochloromethane	ND	900	1800		Toluene		•	4300	900	1800	
Dichlorodifluoromethane	ND	900	1800		Trichloroethene			0000	36000	72000	
-1,1-Dichloroethane	1800	900	1800	12. 4.4.4.4	Trichlorofluoron	nethane	ND)	1800	1800	and the second of the co
1,1-Dichloroethene	600000	36000	72000		1,1,2-Trichloro-	1,2,2-Trifluoroet	hane ND)	1800	1800	
1,2-Dibromoethane	ND	900	1800	The forest contraction	1,1,1-Trichloroe			3000	900	1800	ALSO DE TIETE TRANSPORTE
Dichlorotetrafluoroethane	ND	3600	1800		1,1,2-Trichloroe		ND		900	1800	
1,2-Dichlorobenzene	ND	900	1800		1,3,5-Trimethyll		ND		900	1800	
1,2-Dichloroethane	ND	900	1800		1,1,2,2-Tetrach		ND		1800	1800	
1,2-Dichloropropane	ND	900	1800		1,2,4-Trimethyll		NE		1800	1800	
1,3-Dichlorobenzene	ND	900	1800		1,2,4-Trichlorob	enzene	ND		1800	1800	
1,4-Dichlorobenzene	ND	900	1800		Vinyl Acetate		NE		1800	1800	
c-1,3-Dichloropropene	ND	900	1800		Vinyl Chloride		NE)	900	1800	
c-1,2-Dichloroethene	ND	900	1800								
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:		REC	(%)	Control Limits	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	105	57-129			1,2-Dichloroetha	ane-d4	108	3	47-137		
Toluene-d8	96	78-156									

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

10/26/06 06-10-1520

Method: Units: N/A

EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 3 of 4

Client Sample Number				Sample lumber	Date Collected	Matrix	Date Prepared		alyzed	QC Bat	ch ID
Inlet-102606-C			06-10-1	520-3	10/26/06	Air	N/A	10	/27/06	0610261	_01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Re	sult	<u>RL</u>	DF	Qual
Acetone	ND	3600	1800		t-1,2-Dichloroet	hene	N)	900	1800	
Benzene	ND	900	1800		t-1,3-Dichloropr	opene	NI NI)	1800	1800	
Benzyl Chloride	ND	1800	1800		Ethylbenzene		N)	900	1800	
Bromodichloromethane	3100	900	1800		4-Ethyltoluene		N)	900	1800	
Bromoform	ND	900	1800		Hexachloro-1,3-	-Butadiene	NE)	1800	1800	
Bromomethane	ND	900	1800		2-Hexanone		N) · · · ·	1800	1800	
2-Butanone	ND	1800	1800		Methyl-t-Butyl E	ther (MTBE)	NE)	3600	1800	
Carbon Disulfide	ND	900	1800		Methylene Chlo	ride	5	0000	18000	1800	
Carbon Tetrachloride	ND	900	1800		4-Methyl-2-Pen	tanone	N)	1800	1800	
Chlorobenzene	ND	900	1800		o-Xylene		· N)	900	1800	
Chloroethane	ND	900	1800		p/m-Xylene			2100	1800	1800	
Chloroform	· ND	900	1800		Styrene			3100	1800	1800	
Chloromethane	ND	900	1800		Tetrachloroethe	ne		0000	36000	72000	
Dibromochloromethane	ND	900	1800		Toluene			5600	900	1800	
Dichlorodifluoromethane	ND	900	1800		Trichloroethene		60	0000	36000	72000	
1,1-Dichloroethane	1200	900	1800		Trichlorofluoron	1 11 11911	, NE		1800	1800	a tall of the same and the
1,1-Dichloroethene	580000	36000	72000		1,1,2-Trichloro-	1,2,2-Trifluoroe	thane N)	1800	1800	
1,2-Dibromoethane	ND	900	1800	VII 1	1,1,1-Trichloroe	thane	1	6000	900	1800	
Dichlorotetrafluoroethane	ND	3600	1800		1,1,2-Trichloroe	ethane	N)	900	1800	
1,2-Dichlorobenzene	ND	900	1800		1,3,5-Trimethyll		N		900	1800	
1,2-Dichloroethane	ND	900	1800		1,1,2,2-Tetrach	loroethane	NE)	1800	1800	
1,2-Dichloropropane	ND	900	1800		1,2,4-Trimethyli		N		1800	1800	
1,3-Dichlorobenzene	ND	900	1800		1,2,4-Trichlorob	enzene	N		1800	1800	
1,4-Dichlorobenzene	ND	900	1800		Vinyl Acetate		N		1800	1800	
c-1,3-Dichloropropene	ND	900	1800		Vinyl Chloride		NE)	900	1800	
c-1,2-Dichloroethene	ND	900	1800								
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		REC	<u>(%)</u>	Control Limits	, <u>(</u>	Qual
1,4-Bromofluorobenzene	110	57-129			1,2-Dichloroeth	ane-d4	76		47-137		
Toluene-d8	97	78-156									

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Blasland, Bouck & Lee, Inc.

2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520

Date Received: Work Order No:

10/26/06 06-10-1520

Preparation:

N/A

Method: Units: EPA TO-15 ppb (v/v)

Project: NGSC Former Y-12 Facility / 37134

Page 4 of 4

Client Sample Number				o Sample lumber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
Method Blank			095-01-	021-4,291	N/A	Air	N/A	10/26/0	6 06102	6L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>		Res	ult R	L DF	<u>Qual</u>
Acetone	ND	2.0	1		t-1,2-Dichloroetl	hene	ND	0.5	0 1	
Benzene	ND	0.50	1		t-1,3-Dichloropr	opene	ND	1.0	1	
Benzyl Chloride	ND	1.0	1		Ethylbenzene		ND	0.5	0 1	
Bromodichloromethane	ND	0.50	1		4-Ethyltoluene		ND	0.5	0 1	
Bromoform	ND	0.50	1		Hexachloro-1,3-	Butadiene	ND	1.0	1	
Bromomethane	ND	0.50	1		2-Hexanone		······································	1.0	1	
2-Butanone	ND	1.0	1		Methyl-t-Butyl E	ther (MTBE)	ND	2.0	1	
Carbon Disulfide	ND	0.50	1		Methylene Chlor		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		4-Methyl-2-Pent	tanone	ND	1.0	1	
Chlorobenzene	ND	0.50	1		o-Xylene		ND	0.5	0 1	
Chloroethane	ND	0.50	1		p/m-Xylene		ND	1.0	1	
- Chloroform	ND	0.50	1		Styrene		ND	1.0	1	
Chloromethane	ND	0.50	1		Tetrachloroethe	ne	ND	0.5	0 1	
Dibromochloromethane	ND	0.50	1		Toluene		ND	0.5	0 1	
Dichlorodifluoromethane	ND	0.50	1		Trichloroethene		ND	0.5	0 1	
1,1-Dichloroethane	ND.	0.50	1	** * * * * * **	Trichlorofluorom		ND	1.0		
1,1-Dichloroethene	ND	0.50	1		1,1,2-Trichloro-			1.0	1	
1,2-Dibromoethane	ND	0.50	1	The state of the second	1,1,1-Trichloroe		ND	0.5	-	TRANSPORT AND TRANSPORT TO A STATE OF THE PARTY.
Dichlorotetrafluoroethane	ND	2.0	1		1,1,2-Trichloroe		ND	0.5	0 1	
1,2-Dichlorobenzene	ND	0.50	1		1,3,5-Trimethylk		ND	0.5		
1,2-Dichloroethane	ND	0.50	1		1,1,2,2-Tetrachl		ND	1.0	-	
1,2-Dichloropropane	ND	0.50	1		1,2,4-Trimethylb		ND	1.0	-	
1,3-Dichlorobenzene	ND	0.50	1		1,2,4-Trichlorob	enzene	ND	1.0	1	
1,4-Dichlorobenzene	ND	0.50	1		Vinyl Acetate		ND	1.0	1	
c-1,3-Dichloropropene	ND	0.50	1		Vinyl Chloride		ND	0.5	0 1	
c-1,2-Dichloroethene	ND	0.50	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC	(%) <u>Con</u> Lim		Qual
1,4-Bromofluorobenzene Toluene-d8	102 94	57-129 78-156			1,2-Dichloroetha	ane-d4	102			

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830

Irvine, CA 92612-6520

Date Received: Work Order No: Preparation:

06-10-1520 EPA 5030B

10/26/06

Method: Units: EPA 8260B ug/L

Project: NGSC Former Y-12 Facility / 37134

Page 1 of 2

	Client Sample Number	-			b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
	COMP-102606			06-10-1	520-4	10/26/06	Aqueous	10/28/06	10/28/06	06102	8L01
	<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		Result	RL	DF	Qual
	Acetone	ND	50	1		1,3-Dichloropro	pane	ND	1.0	1	
	Benzene	ND	0.50	1		2,2-Dichloropro		ND	1.0	1	
	Bromobenzene	ND	1.0	1		1,1-Dichloropro	pene	ND	1.0	1	
	Bromochloromethane	ND	1.0	1		c-1,3-Dichlorop	propene	ND	0.50	1	
	Bromodichloromethane	ND	1.0	1		t-1,3-Dichlorop	ropene	ND	0.50	1	
-	Bromoform	ND	1.0	1		Ethylbenzene		ND -	1.0		
	Bromomethane	ND	10	1		2-Hexanone		ND	10	1	
	2-Butanone	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
	n-Butylbenzene	ND	1.0	1		p-Isopropyltolue	ene	ND	1.0	1	
	sec-Butylbenzene	ND	1.0	1		Methylene Chlo	oride	ND	10	1	
	tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pen	ntanone	ND	10	1	
	Carbon Disulfide	- ND	10	1		Naphthalene		ND	10	1	
	Carbon Tetrachloride	ND	0.50	1		n-Propylbenzer	ne	ND	1.0	1	
	Chlorobenzene	ND	1.0	1		Styrene		ND	1.0	1	
	Chloroethane	ND	1.0	1		1,1,1,2-Tetrach	nloroethane	ND	1.0	1	
	Chloroform	ND	2 1.0	1,		1,1,2,2-Tetrach	loroethane	ND	1.0	1.	
Um 200	Chloromethane	ND	10	1		Tetrachloroethe	ene	18	1	1	N
	2-Chlorotoluene	ND	1.0	1		Toluene	. Commence come de la colocida de	ND	1.0	na manada na dana da	
	4-Chlorotoluene	ND	1.0	1		1,2,3-Trichlorol	benzene	ND	1.0	1	
	Dibromochloromethane	ND	1.0	1		1,2,4-Trichlorol	benzene	ND	1.0	1	
	1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichloro	ethane	3.5	1.0	1	
	1,2-Dibromoethane	ND	1.0	1		, ,	-1,2,2-Trifluoroeth	ane ND	10	1	
	Dibromomethane	ND	1.0	1		1,1,2-Trichloroe	ethane	2.5	1.0	1	
	1,2-Dichlorobenzene	ND	1.0	1		Trichloroethene	-	140	1	1	
	1,3-Dichlorobenzene	ND	1.0	1		Trichlorofluoror		ND	10	1	
	1,4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichloro		ND	5.0	1	
	Dichlorodifluoromethane	ND	1.0	1		1,2,4-Trimethyl		ND	1.0	1	
	1,1-Dichloroethane	ND	1.0	1		1,3,5-Trimethyl	benzene	ND	1.0	1	
	1,2-Dichloroethane	0.81	0.50	1		Vinyl Acetate		ND	10	1	
	1,1-Dichloroethene	32	1	1		Vinyl Chloride		ND	0.50	1	
	c-1,2-Dichloroethene	ND	1.0	1		p/m-Xylene		ND	1.0	1	
	t-1,2-Dichloroethene	ND	1.0	1		o-Xylene		ND	1.0	1	
	1,2-Dichloropropane	ND	1.0	1		Methyl-t-Butyl E	Ether (MTBE)	ND	1.0	1	
	Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%	6) <u>Control</u> <u>Limits</u>		Qual
	Dibromofluoromethane	105	74-140			1,2-Dichloroeth		111	74-146		
	Toluene-d8	99	88-112			1,4-Bromofluor	obenzene	97	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830

Irvine, CA 92612-6520

Date Received:

Work Order No: Preparation:

Method:

Units:

10/26/06

06-10-1520

EPA 5030B

EPA 8260B

ug/L

Project: NGSC Former Y-12 Facility / 37134

Page 2 of 2

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	atch ID
Method Blank			099-10	-006-19,45	5 N/A	Aqueous	10/28/06	10/28/06	061028	3L01
<u>Parameter</u> <u>F</u>	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Acetone I	ND	50	1		1,3-Dichloropr	opane	ND	1.0	1	
Benzene I	ND	0.50	1		2,2-Dichloropr		ND	1.0	1	
Bromobenzene	ND	1.0	1		1,1-Dichloropr	opene	ND	1.0	1	
Bromochloromethane i	ND	1.0	1		c-1,3-Dichloro	propene	ND	0.50	1	
Bromodichloromethane I	ND	1.0	1		t-1,3-Dichlorog	propene	ND	0.50	1	
	ND	1.0	1		Ethylbenzene		ND	1.0	1	
Bromomethane I	ND	10	1		2-Hexanone		ND	10	1	
2-Butanone i	ND	10	1		Isopropylbenze	ene	ND	1.0	1	
n-Butylbenzene	ND	1.0	1		p-Isopropyltolu	iene	ND	1.0	1	
sec-Butylbenzene I	ND	1.0	1		Methylene Chl	oride	ND	10	1	
tert-Butylbenzene	ND	1.0	1		4-Methyl-2-Pe	ntanone	ND	10	1	
Carbon Disulfide	ND	.10	. 1.		Naphthalene		ND	10	1	
Carbon Tetrachloride	ND	0.50	1		n-Propylbenze	ne	ND	1.0	1	
Chlorobenzene I	ND	1.0	1		Styrene		ND	1.0	1	
Chloroethane	ND	1.0	1		1,1,1,2-Tetrac	hloroethane	ND	1.0	1	
Chloroform	ND	1.0	1		1,1,2,2-Tetrac		ND	1.0	1	
Chloromethane	ND	10	1	1 147 a. r.s.	Tetrachloroeth	the first and the second control of the	ND	1.0	1	and the first of the fig.
2-Chlorotoluene	ND	1.0	1	7775.000 mm	Toluene	and a second state of the second state	ND	1.0	· ·	war anang managana sasa
	ND	1.0	1		1,2,3-Trichloro	benzene	ND	1.0	1	
Dibromochloromethane I	ND	1.0	1		1,2,4-Trichlord	benzene	ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		1,1,1-Trichlord		ND	1.0	1	
• •	ND	1.0	1		1.1.2-Trichloro	-1,2,2-Trifluoroet	hane ND	10	1	
•	ND	1.0	1		1,1,2-Trichlord		ND	1.0	1	
	ND	1.0	1		Trichloroethen		ND	1.0	1	
•	ND	1.0	1		Trichlorofluoro	methane	ND	10	1	
1.4-Dichlorobenzene	ND	1.0	1		1,2,3-Trichlord	propane	ND	5.0	1	
Dichlorodifluoromethane I	ND	1.0	1		1,2,4-Trimethy		ND	1.0	1	
1.1-Dichloroethane	ND	1.0	1		1,3,5-Trimethy		ND	1.0	1	
	ND	0.50	1		Vinyl Acetate		ND	10	1	
.,	ND	1.0	1		Vinyl Chloride		ND	0.50	1	
•	ND	1.0	1		p/m-Xylene		ND	1.0	1	
	ND	1.0	1		o-Xylene		ND	1.0	1	
- /	ND	1.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	1.0	1	
	EC (%)	Control Limits	-	Qual	Surrogates:	,	REC (%			Qual
Dibromofluoromethane	103	74-140			1.2-Dichloroet	nane-d4	105	74-146		
	99	88-112			1,4-Bromofluo		97	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Calscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Method:

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

10/26/06 06-10-1520 EPA 5030B EPA 8260B

Project NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Matrix Instrument			Date Analyzed	MS/MSD Batch Number
06-10-1557-3	Aqueous	GC/MS R	10/28/06		10/28/06	061028S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	103	104	88-118	1	0-7	
Carbon Tetrachloride	104		67-145	- 2	0-11	
Chlorobenzene	110	112	88-118	2	0-7	
1,2-Dichlorobenzene	110	112	86-116	2	0-8	
1,1-Dichloroethene	107	108	70-130	1	0-25	
Toluene	108	109	87-123	1	0-8	
Trichloroethene	107	107	79-127	1	0-10	
Vinyl Chloride	90	93	69-129	3	0-13	
Methyl-t-Butyl Ether (MTBE)	103	104	71-131	1	0-13	
Tert-Butyl Alcohol (TBA)	111	98	36-168	13	0-45	
Diisopropyl Ether (DIPE)	108	110	81-123	2	0-9	the official section is a second
Ethyl-t-Butyl Ether (ETBE)	106	108	72-126	1	0-12	COTT Familian in the contraction of the contraction
Tert-Amyl-Methyl Ether (TAME)	107	107	72-126	1	0-12	
Ethanol	109	100	53-149	8	0-31	

RPD - Relative Percent Difference,

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

N/A 06-10-1520 N/A

Method:

EPA TO-15

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Bat Number	ch
095-01-021-4,291	Air	GC/MS DD	N/A	10/26/06		061026L01	<u></u>
<u>Parameter</u>	LCS %RE	C LCSD %	REC %F	REC CL	RPD	RPD CL	Qualifiers
Benzene	109	111	6	0-156	2	0-40	
Carbon Tetrachloride	108	111	6	4-154	3	0-32	
1,2-Dibromoethane	98	99		4-144	1	0-36	
1,2-Dichlorobenzene	100	101	3	4-160	1	0-47	
1,2-Dichloroethane	85	104	6	9-153	20	0-30	
1,2-Dichloropropane	100	101	6	7-157	0	0-35	
1,4-Dichlorobenzene	96	95	3	6-156	-1	0-47	
c-1,3-Dichloropropene	-107	109		1-157	. 2		
Ethylbenzene	112	113	5	2-154	1	0-38	
o-Xylene	109	111	5	2-148	2	0-38	
p/m-Xylene	101	102	. 4	2-156	1	0-41	
Tetrachloroethene	106	105	5	6-152	0	0-40	et a la six staar in mig
Toluene	104	106	5	6-146	1	0-43	The second section of the second seco
Trichloroethene	118	119	6	3-159	0	0-34	
1,1,2-Trichloroethane	99	98	6	5-149	0	0-37	
Vinyl Chloride	83	113	4	5-177	30	0-36	

RPD - Relative Percent Difference,

CL - Control Limit

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Blasland, Bouck & Lee, Inc. 2600 Michelson Drive, Suite 830 Irvine, CA 92612-6520 Date Received: Work Order No: Preparation:

Method:

06-10-1520 EPA 5030B

N/A

EPA 8260B

Project: NGSC Former Y-12 Facility / 37134

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	ch
099-10-006-19,455	Aqueous	GC/MS R	10/28/06	10/2	8/06	061028L01	
Parameter	LCS %RE	C LCSD %F	REC 9	6REC CL	RPD	RPD CL	Qualifiers
Benzene	101	103		84-120	2	0-8	
Carbon Tetrachloride	105	107		63-147	1	0-10	
Chlorobenzene	108	110		89-119	2	0-7	
1,2-Dichlorobenzene	111	111		89-119	0	0-9	
1,1-Dichloroethene	106	107		77-125	1	0-16	
Toluene	106	108		83-125	2	0-9	
Trichloroethene	105	107		89-119	2	0-8	
Vinyl Chloride	94	92		63-135	2	0 . 13	
Methyl-t-Butyl Ether (MTBE)	102	104		82-118	2	0-13	
Tert-Butyl Alcohol (TBA)	85	93		46-154	9	0-32	
Diisopropyl Ether (DIPE)	108	108		81-123	0	0-11	
Ethyl-t-Butyl Ether (ETBE)	105	108		74-122	2	0-12	And the second second
Tert-Amyl-Methyl Ether (TAME)	103	106		76-124	3	0-10	ייני דיי פיין אוני איני איני איני איני איני איני איני
Ethanol	97	113		60-138	15	0-32	

RPD - Relative Percent Difference,

CL - Control Limi

Glossary of Terms and Qualifiers

Work Order Number: 06-10-1520

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
B	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1427** TEL: (714) 895-5494 • FAX: (714) 894-7501

D
_

Date	10.26.06	
Page	of	

LABOR	ABORATORY CLIENT: Blooking Borch & Lou, Inc. (BBL)									CLIENT PROJECT NAME / NUMBER: 37 134						4	P.O. NO.:				\neg			
ADDRE	ec.			1881	ا		PROJECT CONTACT:							_	LAB USE ONLY									
1	2600 Michelon	Dr. 29	880		1	:										٠ (N C	
CITY		STATE CA		12612	, Z	IP .		<u> </u>	وباب		1	<u>\</u>												1
ITEL:	Trine E-MAIL			14612					. (ATUR	e)	C	OELT	LOG	COD		75000	:	REC	* * * *			
191	11) 47 4 9052 Y	rzein (2) bbl-	<u>inc. c</u>	<u>~~</u>	1		1	12)	w				<u> </u>					TEN	VP =				0	С
											R	EQ	UE	ST	ED	AN	IAL	.YS	ES	,	-			٦.
	AME DAY 24 HR 2	48 HR	5 DAY	'S 123.1	0 DAYS	·		٦.	1		- 1					11				T		$\overline{}$		\dashv
		COELT EDF D_							H			1					-			. 1		- 1		
	AL INSTRUCTIONS:	LI COELI EDF LI_							H		Ì	- }			- 1	<u>.</u>					- 1			
SPECIA	al instructions.								-][Ī	ı]			i l	CAC, T22 METALS (6010B) / 747	ł				ĺ		1	
1									Ö	8	İ		1		Ì	8	ହ	0	İ	.				1
						:			8	828	-	巤			1	8 (6	827	jo L			-			
l									<u>®</u>	S	<u>@</u>	삤	8	2		¥	ď	₹	₩.	.]	-	İ		
<u> </u>			,					ö	BTEX / MTBE (8260B) or	OXYGENATES (8260B)	8	5035 ENCORE PREP	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	2 ME	PNAs (8310) or (8270C)	VOCs (TO-14A) or (TO-15)	TPH(G) (TO-3M)					1
LAB		FIELD POINT NAME	SAMI	PLING		NO. OF	TPH (G)	TPH (D) or	X	8	3	E C	ဗ္ဂ	31	38 (8	12	8)	၂	9	.				
ONLY	SAMPLE ID	(FOR COELT EDF)	DATE	TIME	MATRIX	CONT.	횬	直	H	ð	VOCs (8260B)	器	S	띮	낊	ङ्	Z	Š	ם				3 .	
	Inld-102606-A		0.26.06	085	G	1					/													
2	Ind-102606-B			1100	G	1				1	~													7
3	Inlet-102606-C			1315	6	1					V											十		┪
				1	V	3			_		/	_	\dashv	-							\rightarrow	-	1	\dashv
9	COMP-102606		1	1445	W)					V			-								\dashv	+	_
									ļ					-									4.	
											Ţ											\Box		
			 		-				\dashv	-			-								-+		++	\dashv
						_			_					_	\perp							\perp		_
100						·								İ			.							
36,34								_					_	1								+		\exists
			 	-				-+								{					-+	\dashv		-
Relin	quished by: (Signature)			Recei	ved by:	(Signati	ure)				0	-	1				Date				Time		1	
	Mehr			1		Z-/		>			<								do.	_ /	15	41	_	
Relin	quished by: (Signature)			Recei	ived by:	(Signay	ure) ($\langle \ \]$: -			^p				Date	e:/	7		Time			
	-year	7				4/4	11	W	<u>_</u>	<u> </u>		(E	2_			10	12/	0/6	2/	16	30	2	_] :
Relin	quished by: (Signature)			Recei	ved for	Laborat	ory by	/: (Si	gnati	re)							Date	э: 💆	7		Time);		
I										i						- 1				ı				

DISTRIBUTION: When with final report, Green to file, Yellow to Client.

OCVOCRWQCB004231

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

02/20/06 Revision

Page 12 of 13

WORK ORDER #: 06 - 1 5 2 0

Cooler ____ of ___

SAMPLE RECE	EIPT FORM /
CLIENT: BBL	DATE: 10/26/6
TEMPERATURE – SAMPLES RECEIVED BY:	<i>i</i> /
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. Comperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank. ° C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
	tact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	

COMMENTS:					
			-		
		•			